Y/

Develagornent System

DOCUMENTA TION

@gmple computer inc

Develgoment Tools Group
FIRST ORAF T--Fetruery 1984

Preface

The purpose of this document is to explain the internal structures and
algorithms used by the Lisa's run-time environment and development tools, and
the internal library units (such as OBJIOLIB) that are related only to Lisa
systems software. It is actually a collection of documents and memos, any of
vhich can be used separately, all relating to different aspects of the system.

This is a reference document for programmers working on the following:

* Maintaining or enhancing existing Lisa development software.

* Writing compilers or utilities for the Lisa Workshop, either on contract
with Apple or as third-party independants.

* Writing assembly-language programs that will interfaced with our compiled
code.

How will they benefit from this document?

* It will save the people maintaining tools the trouble of looking through
the code themselves to find information.

* It will save outside programmers, who don't have access to the code, from
calling us to ask questions about things that w»e have to look up in the
code.

« Parts of it will be included as & reference section in technical
contracts that we assign to outside programmers.

* It will provide assembly-language programmers with such specifics as
register conventions, parameter-passing techniques, and memory layouts
used by the conmpiler for different types of arrays and structures.

* It can be used to train new systems software programmers on the existing
internals of the system.

:Q?CﬁﬁbAJ’?;CU-/

Contents

Lisa Development Software Documentation: A Road Map

Pascal Compiler Directives

Pascal Code—Cruncher's Handbook

The Last Whole Earth Text File Format
Pascal’s Packing Algorithm

PASLIB Procedure Interface
PPaslibC Unit: Privileged PASLIB Calls

Execution Environment of the Pascal Compiler

Intrinsic Units Mechanism (overview)
IUManager (old and “spring release" versions)

Object File Formats
Inbterface to OBJIOLIB

Format of .SYMBOLS File
Shell—Writer's Guide

Lisa Development Software
Documentation:
A Road Map

Introduction

This road map was designed to help you to find your wey sround the vearious
documents describing progrem development for the Lisa. It will help you decide
which software you need to learn more about, which softwere you can ignore for the
moment, and how you should proceed in studying the rest of the technical
documentation.

General Overview of the Erwironments fwailable

There ere as many weys of writing programs as there are crestive programmiers.
However, Apple supports only three general styles of programs that you can write for
the Live: those written for 1) the Workshop environment, 2) the QuickPort
environment, and 3) the ToolKit environment. Programs written for any of these
environments can use most of the same units angd libreries, but there are some
important differences of which you should be swere.

The Workshop (Figure 1) provides a simple non-window, character and graphic
environment within which & program may run. Programs written to run in this
environment may use Pascal's built-in 1/0 for both files and textual display to the
console's terminal emulstar, or they may directly utilize the Lisa DS's file system
primitives. They meay also use the QuickDraw unit for drawing bitmap graphics and
displaying text in & variety of fonts with various attributes, and meay utilize & veriety
of other useful library routines. These programs are not able to use the Lisa Desktop
libraries dealing with windows, menus, and dialog boxes, nor do they have easy &sccess
to Lisa Office System documents.

In addition to providing these run-time facilities, the Workshop also includes &
command shell which makes available to users an extensive set of fecilities for: 1)
Interactive program development in Pascal, Assembly, BASIC, and COBOL; 2) File and
device manipulation, and 3) Interactive and batch program execution and control.

QuickFort (Figure 2) provides the simplest Desktop erwironmert, at least from the
programmer’'s viewpoint. In most respects, writing & program for the QuickPort
environment is identical to writing one far the Workshop environment. Using Pascal's
built-in 1/0 facilities, programs written for QuickPort mey do textual display to &
variety of window-based terminal emulators, and may also displey graphics using
QuickDraw. These programs do not directly use the Lisa Desktop libreries, and are, in
fact, unaware of such things as the window environment, the mouse, and menus. They

J4-Februany~64 Rosd Mep—-1

| (7)p. 3

Internals ER ®& Confidentisl

may, however, exchange infarmation with Lisa Office System documents via the
Cut/Paste mechanism.

The ToolKit (Figure 3) provides the most complete access to the Desktop facilities.
From the programmer’s viewpoint, it also requires the most knowledge of these
facilities. Programs written using the “ToolKit use the Generic Application and may
use any of the ToolKit building blocks, which provide easy, controlled access to the
Lisa Desktop libraries, the mouse, and menus. They may also exchange informstion
with Lisa Office System documents via the Cut/Paste mechanism.

Overview of the Pieces

QuickPart i3 & set of units that are USEd and linked with a program which is to be
run in the Desktop erwironment. QuickPort then provides the program with a
'terminal window”, to which the program's console 1/0 meay be directed through the
use of Pascal's built-in Text 1/0 facilities. The program simply mekes Readln and
WriteLn calls to displey text or receive keyboard input. QuickPort code hides from
the program such issues as cutting and pasting information from other Desktop
applications, communicating with the Desktop shell, growing and shrinking the window,
covering and uncovering the window, and activating or deactiveting the program. For
& program using QuickPort, such issues are of no concern.

The ToolKRt is & set of libraries that provides standard Lisa applicetion behavior,
including windows that can be moved, resized, and scrolled, pull-down menus with
standard functions such as saving and printing, and the Cut/Paste mechanism. The
ToolKit defines the parts of an epplication comnmon to all Lise applications. The
object-oriented structure of the ToolKit allows you to implement your applicstion as
extensions to the "Generic Application”.

The Lisa Operating Systern provides the program with an environment in which
multiple processes can coexist, with the ability to communicate and share date. It
provides a device-independent file system for 1/0 and information storage, and handles
exceptions (softwere interrupts) and memcry management for both code and date
segments.

PASLIB is the Pascal run-time support library. Most of the routines in PASLIB
support the Pascal built-in facilities, including routines for initializetion, integer
arithmetic, data and string manipulation, sets, range checking, the heap, and 1/0.

Floating Poirt Litraries provide numeric routines which implement the proposed 1EEE
Floating Point Standard (Standard 754 for Binary Floating-Point Arithmetic), and
higher-level mathematical algorithms. FPLib provides Single (32-bit), Double (64-bit),
end Extended (80-bit) floating-point data types, & 64-bit Integer data type, conversion
from one arithmetic type to another (or to ASCII), arithmetic operations,
transcendental functions, and tools for handling exceptions. MethlLib provides, amorig
others, algorithms such as extra elementary functions, sarting, extended conversion
routines, financial analysis, zeros of functions, and linesr algebra

QuickDraw s & unit for doing bit-mapped graphics. It consists of procedures,
functions, and dats types you need to perform highly complex graphic operstions very
easily and very quickly. You can drew text characters in a number of fonts, with

14-february-54 Road Mep—«

1744

Internsals & Conlidentisl

veristions that include boldrace, italic, underlined, and outlined; you can draw
arbitrary or predefined shapes, either hollow or filled;, you cen draw straight lines of
any length and width, or you can draw any combination of these items, with a single
procedcure call.

The Deskiop Libraries provide window, graphics, mouse, and menu routines used by
all Office Systemn applications. They are not directly called by any programs written
for the three run-time environments discussed here, but provide the hidden foundation
for both the QuickPort and the ToolKit emvironments.

The Harodware Imearface unit lets you access Lisa hardwere elements such as the
mouse, the cursor, the displey, the contrast control, the speaker, the keyboard, the
micro- and millisecond timers, and the hardware clock/calendar.

The Sandard Unit lets you do string, character, and file-name marnipulation,
prompting, retrieval of messages from disk files, abort exec file processing, and
conversions between riumbers and strings.

The DFrimftives unit provides you with fast, efficient text-file input and output.

The Prograrn Cormrmunication unit allows programs to communicate with each other
and with the Workshop shell.

LisaRxg allows you to examine and modify memory, set breaskpoints, assemble and
disassemble instructions, and perfarm other functions for run-time debugging.

More Detail

QuickPort: A program which is to make full use of the capsbilities of the Lisa Office
System will be structured as an endless loop, within which the program continually
polls the Window Manager for any events it should respond to. We will refer to such
& program as an /nlegrated Frogram: An integrated program must handle such
asynctronous events as the program's window being activated or deactiveted, the
window being opened, closed, moved, resized, or needing update, the mouse button
going down or up, and a key going down or up. The program must also be & good
citizen in Lisa's multi-tasking but non-preemptive scheduling environment by
volurteering periodically to yield the CPU to any other process needing service.
These are just a few of the important cheracteristics of an integreted program. The
result of & program following these and other guidelines will be that it exhibits the
same consistent, responsive behavior as other Apple-written programs like LisaDraw.

QuickFoart s a collection of pieces which make writing programs for the Office
System's window ernvironment as easy as writing them for the Workshop's non-window
environment. NOTE: In order to differentiste the QuickPort modules from the
program which uses them, we will refer to the program itself as a Vanilla Frogrem
QuickPort allows the vanille program to be more traditionally structured, as if its user
interfacing were being done through a smart text/graphics terminal; the vanilla
program presents its display to the user by & combination of text 1/0 calls (e.g.,
WwriteLn/ReadlLn) and QuickDraw calls (e.g., DrawString/PaintRect). The QuickPort
modules handle all everts from the Window Manager, provide for yielding the CPU to
competing processes et specific points, and in general shelter the program from the

J4-Februan~84 ' Road Mep—3

/7//).(

Internals & Confidential

sometimes tricky requiremerts of writing an integrated program for the Lisa Office
Systern.

QuickPort provides the vanille program with a window, which may be divided into &
Text Fere! and 8 QuickDraw Fanel for displaying both textual and graphic
information. Each of these optional panels is configurable in size and locetion, and
may be independently scrolled harizontally or vertically. Text and Graphics windows
may be overlaid, so the resulting window presents a composite of both types of
output. The window mey be resized, moved, covered, or uncovered without the
vanilla program even being aware of such events. Textual and graphic information
may be exchanged between & vanilla program's document and other documents,
whether vanilla or integrated, by using the familiar Cut/Paste mechanism. Without
any effort on the part of the vanilla program, the end user is given a large measure
of control over the window's configuration and behavior, using mouse and menu
actions supported by QuickPort.

The user may request printing of either the text panel or the grephics panel. In
addition, vanilla programs may produce printed output under program control by
writing to the -PRINTER logical device. Whereas, in the Workshop environment,
printing is immediate (each line printing &s soon &s the program "writes" it), in the
QuickPort/Desktop environment printing is all spooled. This means thet the printed
output of a vanilla program will be submitted to the Office system's PrintShop, which
determines from the print queue when the document will be printed.

The 7ext Farnel emulstes 8 terminal displey which corresponds to the Pascal built-in
OUTPUT file, the built-in INFUT file, and the ~-CONSOLE and -KEYBOARD logiceal
devices. Apple provides emulators for the F7X0 and SORGC terminals, and makes
it possible for you to either custormize them or create entirely new terminal
ermulators. These terminal ermulators are sctually 7ilters which pre-process the
character output streamn destined for the Standard Terminal Linit. which provides the
Text Panel display. Each emulator's job is to recognize the terminal-specific
character sequences imbedded in the output stream which eare commands to the
terminal, and to call upon the Standard Terminal Unit to teke the eppropriate actions.
A program may eliminate the filtering step, if desired, by calling directly upon the
Standard Terminal Unit for display actions.

The Graphics Fanel sllows your program to display graphics on a bitmap which is &
maximum of 720 pixels wide by 364 pixels high--the same size as Lisa's physical
screen bitmap. This panel can be resized by the user or under program control, and
can be scrolled harizortally and vertically to displey different parts of the entire
bitmep. The Graphics Panel supports every QuickDraw call, including those related to
setting foreground and background colors for printed output. An application may
write anywhere in the coordinate plane of its graphics panel (‘grafPort', to use
QuickDraw's terminology), without having to worry about where jts window is placed
on the screen ar what other windows are in front of it. QuickDraw, with a little help
- from the Window Manager, keeps the application's output from getting out of the
graphics panel or from clobbering other windows.

14-Februan~84 Road Map-4

/7/f.c

Internals , & Confidentisl

The ToolKit: The ToolKit is a set of libreries thet provides standard behavior that
follows the design principles characterizing Lisa applications:

» Extensive use of graphics, including windows and the mouse pointer.
= Use of pull-down menus for commands.

= Few or no operating modes.

e Dats transfer between documents by simple cut and paste operstions.

For example, all Lisa applications have windows thet can be moved around the screen,
and that can usually be resized and scrolled. The ToolKit takes cere of all these
functions. The ToolKit also displays a menu bar for the active epplication, and
provides a number of standard menu functions, such as saving, printing, and setting
aside.

However, the ToolKit is more than 8 set of libraries. Because the ToolKit is written
using Clascal, the ToolKit is almost &8 complete program by itself. You cean, in fact,
write a five-line main program, compile it, link it with the ToolKit, and run it. Whst
results is the Generic Application. :

The Generic Application has many of the standard Liss application cheracteristics. A
piece of Generic Application stationary can be torn off, and, when the new document
is opened, it presents the user with a window with scroll bars, split controls, size
control, and a title bar. The mouse poirter is handled correctly when it is over the
window. The window can be moved, resized, and split into multiple panes. There is &
menu bar with & few standard functions, so that the generic documert can be saved,
printed, and set aside. The single Generic Application process can manage any
number of documerts. You cannot, however, do smything within the window, aside
from creeting panes. The space within the window, along with the additional menu
fuctions, is the responsibility of the real application.

‘“Therefore, when you write & Lise applicetion using the ToolKit, you essentially write
extensions to the Generic Application. It is very easy to write extensions to any
Clascal program. To insert your application's functions, you creste a set of
subclasses, including methods to perform the work of you application, and then you
write & simple main program, and compile and link it with the ToolKit.

Whenever necessary, the ToolKit calls your application's routines. For example, if the
user scrolls the document, the ToolKit tells your program to redraw the changed
portions of the window. Your program does not need to be concerned with when
redrawing is required.

One effect of Clascal is that you can write applications in steps. You can begin by
doing the least amourt possible, and get an application that does very little, but will
run. You can then extend your application bit by bit, checking as you go. This
characteristic of Clascal makes it easy to extend the capabilities of ToolKit programs,
even years efter the original program.

The ToolKit's debugger, KitBug, provides run-time debugging of ToolKit Clascal
programs. It allows you to do performance measurements, set breakpoints and traces,
single-step through your program one stetement et & txme end do high-level
examinations of data objects.

14-February~84 Rosd Map-5

/',7,47.7

Internals & Confidentisl

The Operating System: The Operating System fprovides sn environment in which
multiple processes can coexist, with the ability to communicate and share data. It
provides a file system for I/0 and information storage, and handles exceptions
(software interrupts) and mermory management.

The File Systern provides input and output. It accesses devices, volumes, and files.
Each object, whelher a printer, disk file, or any other type of object, is referenced tw
s pathname. Every 1/0 opersation is performed as an uninterpreted byte stream. Using
the File System, all 1/0 is device-independent. The File System also provides device-
specitic control operations.

A process consists of an executing program and the data associsted with it. Several
processes can exist &t once, and will appeer to run simultaneously because the
processor is multiplexed among them. These processes can be broken into multiple
segments which are automatically swepped into memory as needed. Communication
between processes is accomplished through events and exceptions. An &vent is a
message sent from one process to ancther, or from & process to itself, that is
delivered to the receiving process only when the process asks for it. An exception is
8 special type of event that forces itself on the receiving process. In addition to a
set of systemn-defined exceptions (errors), such as division by zero, you can use the
“system calls provided to define any other exceptions you want.

Memory menagement routines handle date segments and code segments. A Jdata
segment is a file that can be placed in memory and accessed directly. A code
segment it & swapping unit that you can define. If a process uses more memory
than the svaileble RAM, the US will swap code segments in and out of memoary as
they are needed.

PASLIB: PASLIB is the Pascal run-time support library. It provides the procedures
and functions that are built into the Pascal language, acts as the run-time interface
to the Operating System, and "completes" the 68000 instruction set by providing

routines for the compiler-generated code to call upon in lieu of actusl herdware
instructions.

PASLIB routines are called with all parameters passed on the stack. There is an
initialization routine to initialize necessary veriables, libraries, and exception-handlers
and set up globel file buffer addresses, and a termination routine to kill processes.
You can do four-byte integer arithmetic. Data can be moved, or scanned for &
particuler cheracter. String manipuletion routines include concetensting, copying,
inserting or deleting & substring, determining the position of a substring, and
compering strings for equality. Set manipulation routines let you find set
intersections or differences, adjust the size of a set, and compare sets for equality.
There ere range-checking and string range-checking routines. Heap routines let you
allocate memory in the heap, mark or release the heap, check available memory in
the heap, and check the heap result. 1/0 routines let you read and write lines,
characters, strings, packed arrays of characters, booleans, and integers, as well as
check for a keypress or an end-of -line, and send page merks. File 1/0 routines

14-February~864 Road M&y—5

/7//. g

Internal s & Conlidentis,

include rewriting, resetting or closing a file, detecting an end-of-file, reading and
writing blocks, and get, put, and seek procedwes.

Floating-Point Litraries: The Lisa provides arithmetic, elementary functions, and
higher level mathematical algorithms in its intrinsic units FPLib and Mathiib, whict,
are contained in the file IOSFPLIB.

FPLib provides the same functionality as the SANE and Elems units on the Apple]|
and ///, including:

» Arithmetic for all floating-point and Comp types.

= Conversions betweer numerical types.

» Conversions between numerical types, ASCI strings, and intermediate forms.
« Control of rounding modes and numerical exception handling.

= Comrnon elemertary functions.

MathlLib provides the extre procedures svailable only on the Lisa:

» Extra environments procedures.

= Extre elementary functiors.

* Miscellaneocus utility procedures.

» Sorting.

= Free-formeat conversion to ASCIL

e Correctly rounded corversion between binary and decimal.
» Financial analysis.

s Zeros of functions.

s Linesr algebra

QuickDraw: VYirtually all of Lisa's graphics are performed by the QuickDraw unit.
You car: draw text, lines, and shapes, and you can draw pictures combining these -
elements. Drawing can be done to many distinct “"ports" on the screen, each of which
is & complete drewing environment. You can "clip" drawing to arbitrary aress, so
thst you only draw where you want. You can draw to an off-screen buffer without
disturbing the screen, then quickly move your drawing to the screen.

Tex! characters ere svilable in & number of proportionally-spaced fonts. Any font
can be drawn in any size--if a font isn't available in & particular size, QuickDraw
will scale it to the specified size. You can draw characters in any combination of
boldface, italic, underlined, outlined, or shadowed styles. Text can be condensed or
extended, and it can be justified (aligned with both a left and a right margin).

Straight Zines can be drawn in any length and width, and cen be solid-colored {(black,
white, or shades of gray) or patterned.

Shapes defined by QuickDraw are rectangles, rectangles with rounded corners, full
circles or ovals, wedge-shaped sections of circles or ovals, and polygons. In addition,
you can describe any erbitrery shape you want. All shapes can be drawn either
hollow (just an outline, which has all the width and pattern characteristics of other
lines) or solid (filled in with & coler or pattern that you define).

14-Fetruary~84 Road Msp—-7

17/p-9

Internals & Confidentisl

QuickDraw lets you combine any of these elements into & picture, which can then b
drawn--to any scale--with a single procedure call.

Three-dimensional grephics capeabilities are also available, in a unit called Graf3D,
which is layered on top of the QuickDraw routines. Graf3D lets you drew three-
dimensionel objects in true perspective, using real veriables and world coordinates.

The Hardware Interface: The Hardweare Interface unit lets you access Lisa hardware
elements such as the mouse, the cursor, the display, the speaker, the keyboard, and
the timers and clocks.

Mouse rtoutines determine the location of the mouse, set the frequency with which
software knowledge of the mouse location is updsted, change the relationship between
physical mouse movermnent and the movemert of the cursor on the screen, and keep
track of how far the mouse has rmoved since boot time.

Cursor routines let you define different cursors, track mouse movements, and displey
8 busy cursor when an operstion tekes a long time.

Screen-control routines can set the size of the screen, and set contrast and
automnatic fading levels.

Speaker routines allow you to fznd out end set the speaker volume, and create
sounds.

Routines are provided to handle the different Ae&yboards available for the Liss, a&s
well as the mouse button and plug, the diskette buttons and insertion switches, and
the power switch. You cen find out which keyboard is sttached, and set the systern
to believe that a different physicsl keyboard {s connected. You can check to see |
what keys (including the mouse tutton) ere currently being held down, look st or

return the events in the keyboard queue, and read and set the repeal retes for
repestable keys.

Date and time routines let you access the microsecond and millisecond timers and
check or set the dste and time.

The Stenderd Unit: The Standard Unit (StdUnit) is an intrinsic unit providing a
number of standard, generally-useful functions. The functions are divided into aresas
of functionality: character and string manipulation, file name manipulation, prompting,
retrieval of error messages from disk files, Workshop support, and conversions.

The unit provides types for standerd strings and for sets of characters, definitions for
@ number of standard characters (such as <CR) and <BS>), and procedures for case
conversion on characters and strings, trimming blanks, and appending strings and
characters.

File name manipulation functions let you determine if a pathname is & volume or
device name only, add file name extensions (such as “.TEXT"), split & pathname into
its three basic components (the device or volume, the file name, and the extension)
put the components back together into a file name, and modify a file name given
optional defaults for missing volume, file, or extension components.

14~February~84 | Road Fio8

/7//« /0

Internsl s | & Conlidentisl

Prompting procedufes let you get characters, strings, file names, integers, yes or no
responses, and so forth from the console, providing for defaull values where

appropriate.

Special Warkshop functions let you stop the execution of an EXEC file in progress,
find out the name of the boot and current process volumes, and open system files,
looking at the prefix, boot, and current process volumes when trying to access a file.

Conversion routines let you corvert between INTEGERs (or LONGINTs) and strings.

The DPrimitives Unit: The I0Primitives unit provides you with fast, efficient
text-file input end output rowtines with the functionality of the Pascel 1/0 routines.
It includes routines for reading characters or lines, and for writing characters, lines,
strings, and integers, plus the low-level routines on which the others are based.

The Program Communications Unit: The Program Communications unit (FrogComm)
provides three mechanisms for communication between one program and another cr
between & program and the shell. The first two involve strings sent from & program
to the shell; one tells the shell which program to run next, the other is & 'veturn
string” thet can be read by the exec file processor to tell an exec file, for example,
whether the program completed successfully. The third mechanism involves reading
from and writing to & 1K byte communications buffer, global to the Workshop. Using
the unit, & program can invoke another program and provide its input through the
buffer, without user intervention.

LisaBug LisaBug provides commaeands for displaying and setting memory locations &nd
registers, for assernbling and disassemnbling instructions, for setting breakpoints and
traces to trace program execution, for manipulating the memory management
hardweare, and for measwring execution times using timing functions. Wtility
commands are also available to clear the screen, print either the main screen or the
LisaBug screen, change between decimeal and hexadecimal, change the setting of the
NMI key, and display the values of symbols.

J4-February~84 Road Mep—

Internals & Confidentisl

Where to Go from Here

The Lisa development software is not fully documented yet. The following is & list of
what is eavailable, some of it only internally, as of this publication. Note that the
spring-release meanuals will be organized differently from the current versions, and
will incorporate much of the information that is now in the internals documentation
or in separate docurnents.

Fascal Reference Manual for the Lisa
includes: QuickDraw
Hardwere Interface
Floeting-Point Library

Operating Sy'stem Rererence Menusl ror the Lisa
Workshop Liser’s Guide for the Lisa

Liss Development S)stem Inmernsals Docurnentation
includes: Pascal Run-Time Library
Standard Unit
LisaBug
Flogting-Point Libraries

QuickFort Rpplications User Guide*
QuickFort Frogramrner's Guide*

An Introduction to Clascal

Clascal Selr-Stuay:

Toolkit Reference Manual

ToolKit Training Segments

Numerics Menusl: A Guide to Lising the rpple «+F Fascal SANE and Elerns Units
FPLib provides the same functionality as these units.

Mathlib Guide*

*These manuals currently in rough draft form.

l4-February~84 Road Msp—.”

/7/p, /2

WORKSHOP PROGRAM
LELLLSALLLLEAALIRATENAS

> { Floating—Poirt Libreries) '

LIEEE Numerics, Math Algarithms

le (Hardwere Interface)

lMouse, Keyboard, Clocks, Speaker

le { Standard Unit
L Strings, Prompts, Error Msgs, misc

f 1/0 Primitives }
o ,
‘ Fast Text File I

- (Program Communication }

L Inter-program and Shell Communication

f Pascal Run-Time Library)
il B 170, Heap, Strings, Math ’ y
<{ QuickDraw)
| — Bit-Map Graphics]
X ' Lisa Operating System
[Memory Mgmt, File System, Process Mgmt

Figure 1
The Workshop Run-Time Environment

KEY to Figures 1, 2, & 3

it N i ite thet mst be
4 Unit 1 ingicates unite uses >

Description of what it does] ingicates opticral wnits trat may be wse |

Roag nrep-11
! /7). 73

IABARRRRARRRERRARERAREE]

QUICKFPORT PROGRAM

IS NN NN NN REREN]

{ Flosting-Point Libraries

LIEEE Numerics, Math Algorithms
{ Haodwee Interface)
L Clocks, Spesker J'
{ Standard Unit

{ Strings, Prompts, Error Msgs, misc

r

J
Pascal Run-Time Library) o
1/0, Heep, Strings, Meth)

G) | G

v

Printer Support)

(St.andatd Terrninal)

L -Printer)}

“

(QuickPart)
virtuel-Terminal Window
ToalKit)

Generic Application, Bldg Blocks

!

v v
l 1 Desktop Libraries 1}
L Window Mgr, Starage Mgr, Font Mgr, Print Mgr }
- g QuickDraw
- Bit-Map Graphics
> Lisa Operating System
L Memary Mgmt, File Systemn, Process Mgt

]
J

Figure 2

The QuickPart Run-Time Environment

Rosa Map-12

7l

[Fiosting-Poirt Litraries)
UEEE Nurnerics, Math Algorithm:'

- f Hardweare Interface —]
l Clocks, Speaker J.
——{ Pacal Run-Time Library

170, Hesp, Strings, Math

(ToolKit e
LGenen’c Applicsation, Bldg BlocksHKitai)—

f Desktop Libreries)
| Window Mgr, Storage Mgr, Font Mg, Print Mgr

v

‘._.r QuickDraw]‘
— Bit-Map Graphics

\
\.;f Lisa Operating System

Memory Mgmt, File System, Process Mgmt

Figure 3
The ToolKit Run-Time Environment

Rosad Mep-17

/7//;. 75

17/p/e

Pascal Compiler Directives

The following compiler commands ere available:

$%+ or $%
$C+ or $C-

$0+ or $O-

$E filename

$+ or $H-

$1 filenane

$. filename

$L+ or $L-

$0+ or $O-

$OvV+ or $OV-

7-Februsary-64

Allow the ¥ symbol in idertifiers. The default is $%.

Turn code gereretion on (+) or off (). This is done on &
procedure-by-procedure basis. These commands should be writter
between procedures; results are unspecified if they are written
inside procedures. The default is $C+.

Turn the generation of procedure names in object code on (+) or off
(=). These commaeands should be written between procedures; result:
are unspecified if they are written inside procedures. The default
is $0+

Start making e listing of compiler errors as they are encouriered.
Arialogous to $L filename (see below). The default is no errcr
listing.

Disables hendle checking so dereferenced handle: (master pointers)
meay be used in with statements, on the left side of assignment
steatements, end in expressions involving procedure calls. The
default is $H+.

Start taking source code frorn file filename. Wher the end of the
file is reached, revert to the previous source file. If the filenarre
begins with + or -, there must be a space between $I and the
filename (the space is not necessery otherwise). Files may be $1
included up to five layers deep.

Start listing the compilation on file filename. If & listing is being
macde already, that file is closed and saved prior to opening the
new file. The defsult is rno listing. If the filename begins with +
or —, there must be & space between $L and the filename (the space
is not necessary otherwise).

The first + or - following the $L turns the source listing on (¢} or
off (=) without changing the list file. You must specify the listing
file before using $L+. The default is $L+, but no listing is produced
if no listing file has been specified.

Suppress register opitimization (-). The default is $D+.

Optirnizetion limited--use the old (2.0 release) optimizstion
mechanism, instead of the new one. The default is the new one.

Turn integer overflow checking on (+) or off (). Qverflow checking
is done sfter all irteger add, subtract, 16-bit multiply, divide,
negate, abs, and 16-bit squere operations, and after 32 to 16 bit
conversions. The default is $OV-.

Compiler QDirectives-1

lnternsls

R+ or R

$S segnane

$U filenane

$U+ or $U-

X+ or X~

7-Fedruary-94

& Cordigentisl

Turn renge checking on (+) or off (-). At present, range checking i
dorie in assignirnent stetements and arrey indexes &nd for string
value parameters. No range checking is done for type longint. Tne
defaull is $R+.

Start putting code modules into segment segname. The defsault
segrnent name is & string of blanks to designate the "blank
segment,” in which the main program and all built-in support code
are alwsys linked. A1l other code can be placed into any segment.

Search the file filename for any units subsequently specified in the
uses-clause. Does not apply to intrinsic-units.

Tell the systermn rct to sesrch INTRINSIC.LIB for units you use (-).
The defsult is $+ — the system searches INTRINSIC.LIB first,
then your own libraries.

Turn sutomatic run-time stack expansion on (+) or off (-).
Run-time stack expansion is the insertion of an extra 4-byte
instruction per procedure to ensure that the Liss's memory-
management mechanism has mapped in enough steck space for the
execution of the procedure. With $%-, excessive uste of the stack
by the procedure could cause & bus error. The default is $X+.

The $SETC command has the form:

{$SETC ID := EXR)
or
{$SETC ID = EXR}

where ID is the identifier of & cornpile-time variable and EXPR is a
compile-tirne expression. EXPR is evalusted imrnedistely. The
value of EXPR is assigned to ID.

Compile-tirme varisbles sre completely independent of prograrn
veariatles; even if & compile-time variable and & program variable
have the same identifier, they can rnever be confused by the
compiler.

Note the following points about compile-time wvariables:

= Compile-time veariables have no types, although their vaiues do.
The only possible types are imteger and boolean.

« At any point in the program, a compile-time variakle can have
a new value assigned to it by a $SETC command.

i

Cornpiler Directi

lrnleringl: & ConligeniE]

$1FC, $ENDC
$ELSEC Conditionel compilation is cortrolled by the $IFC, $ELSEC, anc
$ENOC commands, which are used to bracket sections of sowrce teit.
Whether a particuler bracketed sectior of & progrem is compiled
depends on the boolean value of & compile-time expression, which
can contein compile-time variabies.

The $ELSEC and $ENDC commands take no arguments. The $1FC
commeand has the form:

{$1FC DR}
where PR is & compile-time expression with & boolean value.

These three commands form constructions sirnilar to the Pascal
if-staternert, except thet the $ENDC command is slways needed &t
the end of the $IFC construction. $ELSELC is options).

$IFC constructions can be nested within each cther to 10 level:.
Every $IFC must heve & mstching $ENDC.

Compile-time expressions appesr in the $SETC commend &nd ir the
$IFC comnmend. A cormnpile-time expression is evealusted by the
compiler & soon &s it is encountered in the text.

The only operands allowed in & compile-time expression are:
= Compile-time veriables

= Consterits of the types integer and boolean. (These are also the
only possible types for results of compile-tirne expressions.)

All Fascal cperetors are allowed except as follows:
= The in operator is not sllowed.
= The ® operator is not allowed.
= The / operstor is autornaticelly replaced by div.

7-Februsry-84 Cornpiler Curectives-=

Pescall

Codle Cruncher's
FEncbook

Fred Farsrmen

Revision 1.0
September 28, 1983

Remove unsightly, unwanted bytes
in the privacy of your own office.

No gimmicks, pills, fads oF Strenuous exercisse.

Pascal Code Cruncher's Handbook Page 1

PASCAL
CODE CRUNCHER'S
HANDBOOK

fred Forsman

Introduction

This document explains how to reduce the size of Pascal code by changes
at the Pascal source level. Thus what will be presented are source
transformations which result in semantically equivalent, but smaller
coge.

While these transformations will produce smaller code, they are unlikely
to produce code that is “better” in all senses. Sometimes you will be
trading off clerity for efficiency since typically you will be changing
vhat was the first and obvious wey of writing your code. 0On the other
hand, your code may benefit (and actually become clearer) just from
having been thought about & second time. Nevertheless, if it is given
that you must reduce your code size, vou may find these source
transformations more palatable (and more maintainable) than rewriting in
assembly language.

Please note that this is & living document, that is, no claims are mede
that this is a complete or final list of source transformation
techniques. New techniques will be added as I find out about them (so
if you are sware of some transformations not mentioned here please let
ne know about them}. ARAlso, some of the techniques described will be
removed from this document when future compiler optimizations obviate
the need for them.

00O

Thanks to Al Hoffman for his invaluable assistance in researching ang
documenting much of the material presented here. Thanks also to Ken
Friedenbach and Rich Page.

Pascal Code Cruncher's Handbook ' " Peage 2

How to find what code to crunch and how to
| measure your progress

Given a Pascal unit which you want to crunch, you need to identify the
procedures which are most likely to benefit from crunching and vou need
a mechanism by which to measure the results of your efforts. The Pascal
code generatar writes information to the console on the size of the code
generated for each procedure and the size of the code for the unit being
compiled. With & compile exec file such as the one below you can
redirect this information to a file, for use in later analysis.

$EXEC {perform a compile)

3 { the first parameter (%0) specifies what file to compile }

3 { if a second parameter is specified, it is used for the output ob)
file, otherwise we default to "%0.obj" } ‘

9 { if & third perameter is specified, the code generator's console
output is redirected to “%2.text”, otherwise default to “g.text" }

3 [the intermediate file is put in & temp file on -paraport |}

P{Pascal}%0

-paraport-temp

3IF %2 <> '' THEN
S{Sys-mgr)0{OutputRedirect}%2.text

3ELSE

S{Sys-mgr}0{OutputRedirect}g.text
ENDIF
Q{quit Sys-mgr}
G{generate}-paraport-temp
SIF 21 > '' THEN

%1
$ELSE

%0
FENDIF
S{Sys-mgr}0{OutputRedirect }-console
DQ{quit}
SENDEXEC

Once you have the code generator's console output, the first step is to
identify the easy targets for crunching: most often these will be the
larger routines (code size > 250 bytes, or some similar criterion). The
above exec file can then be used to verify that any changes you make
actually result in code size improvements.

Pascal Code Cruncher's Handbook Page 2

It you are working on code that is not totally new, chances are that it
has undergone a number of major and minor changes. As code is modified,
“dead” code and variables are often left around inadvertently. These
unused objects can be discovered and removed by checking the code with
the various cross reference utilities. (While the Workshop linker will
remove dead code automatically it will not remove dead variables.)

For those of you who want to know what the compiler is really doing, use
the DumpObj utility to look at a disassembly of ary of the procedures or
functions you are interested in.

Pascal Code Cruncher's Handbook ’ Page 4

How to crunch code: techniques

Following are a number of techniques for Pascal source transformation.
The fine print following the description of each technique attempts to
estimate the potential space savings, the difficulty of implementation,
and probsbility of introducing errors.

1.

The first law of code crunching: don't use in-line code when a
procedure to do the same thing exists. The in-line code may be
faster, but space is more important in the vast majority of cases.
In order to apply this law effectively vou should KNOW WHAT IS
AVAILABLE IN THE LIBRARIES. Similarly you should be femiliar with
what the language provides, particularly in the area of built-in
procedures and functions.

USU‘Q existing cooe is pure gain. The dsnger of aoing so shoyld be ninimal since the
compliar snd libraries 3nould be error free (Or ot lesst their dugs vill De recognized and
fixed sooner then yOuUT private cooe which is exercized less often).

An extension of the above law is the creation procedures which
perform code segquences which are repested often in your code (minor
differences can be handled by psrameterization). One neme for this
technique is "factaring”. Use of paremeters can degrade the
optimization if the size of the code being factored is small. On
the other hand, if introduction of a parameter will allow sharing
of & long sequence of code the extra overhead should be well worth
it. A word of warning: check to see whether your factoring really
paid off — the code being factored out should not be smaller than
the procedure call (and any peresmeter passing) that replaces it. A
point to note is that factoring of even single statements can be
fruitful, for example:

RIF(X)] := A[F(X)] + 1; becomes INCR;

Factoring can De a BIG win in many cases offen seving mMOTe than can be schiewed Dy any
other technique. SO it 0ften PayS tO 100k TIOUGN YOUT COGR fOF COMMON CO0 SEQUences.
mgxemty nd likelynooo Of erTors are 10w, DUt incresse if parsmeters must de
intToouced

Make procedures that are 50-100 lines long - around 300 bytes of
code - to optimize allocstion of variables to register. Shorter
routines do not have enough occurrences of variables to make
register allocation worttwhile, and longer routines create more
opportunities for register optxmlzetlon than there are registers
available.

The smaunt of improvesent using this technique is highly verisdle. Difficulty is

Pascal Code Cruncher's Handbook Page 5

4a.

4b.

4c.

4d.

moderste; likelynood of errors is low.

Avoid the use of globel scaler (1 to 4 byte} variables whenever
possible - global variables are never put into registers.
Techniques applicable here include:

Assign a frequently used global variable to a local veriable, and
change all references to be the local quantity. Caution! Bewsre of
saving and restoring the global quentity around procedure calls
that might access the global quantity.

The amount of improvement will be two to four bytes per reference,
with the greatest gain eppearing on assignments like R:=R+1. There
is an overhead cost to assign the local and save registers (4 to 14
bytes). Improvement will not occur if the registers have already
been assigned to locals that are used more frequently than the
global is.

The saount Of improvement using this technique is noted sdove. Difficulty is low:
likelyrooo of errers is high. ‘

Further leverage on (4a) can be obtained if the same local
temporary variable is reused in different parts of the procedure
for different global variables. In this wey less frequently used
globals still heve a chance for optimization into registers.

Improvement is two OF MOre Dytes per e00itional reference, less 4 Dytes per new gloosl
sssigned. Difficulty is mooerate; likelyhood of errors 1s even higher than (ds).

Another, more reliable wey of comverting & global to & local is to
pass the global variable as & var peremeter to the routine.
Parameters are treated like local variables.

Improvement is twvo or more bDytes per reference, less 8-10 Dytes per adCitiona) paremeter,
sDject to register corpetition &s noted sbove. Difficulty and likelyhood of errors vith
Var parsmeters is lov.

HMove a large main program body into a main subroutine. Move all
global variables that are only accessed by the main program into
the subroutine.

Isprovament is ganarally small, s$ince the main program dody is usually a small part of the
total ococe. Difficulty end likelyhood Of errors ere low.

In & moderate to large procedure, the number of scaler (1 to 4
byte) local variables (and parameters) should be kept to & minimum,
since there is competition for registers. Briefly used integer
quantities and loop variables, for example, should all be stored in
the same variable (which might be appropriately named "tempint" or
some other generic name). Beware, of course, that the variables

Pascal Code Cruncher's Handbook Page 6

usages are never simultaneous.

Inprovement, for each additional local variable that overloass sn existing register, is
typically two Dytes per reference. Difficulty is low; likeiyhood of errors is moderate.

6. Avoid, at all costs, passing frequently used local variables as vear
parameters or using them in nested procedures. (RAlso for
frequently accessed parsmeters.) These actions inhibit the value
from being located in & register. Replace passing as & var
parameter with assignment to a new locel variable, passing the new
local, then doing a reverse assigrment. Replace nested procedure
wsage of the variable with passing the veriable as a non-var
parameter, use of the parameter inside the subroutine, then, if the
nested procedure changes the velue, copy the parameter into & new
variable at the end of the subroutine copy it back into the main
local variable after the call. The following example illustrates
optimization of nested usage of A and B:

PROCEDURE UPPER; PROCEDURE UPPER;

VAR A, B:INTEGER; VAR A, B, TEMP : INTEGER;
PROCEDURE LOWER; PROCEDURE LOWER(R, B:INTEGER):;
BEGIN BEGIN
R := B; comerts to—) R :=B;

TEMP := R;
END; , END:

BEGIN BEGIN

LOWER; LOWER;

{other statements) A .= TEMP;

{freguent uses of R and B} {frequent uses of R and B}

END; eND;

Note that, in the above case, if A is not frequently used in the
subroutine, it could be eliminated as a parsmeter and the
assigrnment could be made to TEMP directly:

PROCEDURE LOWER(B: INTEGER]);
BEGIN

TP := B;

END;

f finsl added technique that can be used with procedure calls 1$
to pass the local as a non—-var parameter, change the procedure to a
function, and assign the returned functlon result back to the local

variable.
PROCEDURE PROC(YAR N:INTEGER); FUNCTION PROC(N:INTEGER):INTEGER:

PROCEDURE LOCAL; FUNCTION LOCAL(A.B:INTEGER) : INTEGER
e becomes——»

Pascal Code Cruncher's Handbook Page 7

10.

PRE(G) R := (
LOCRL; A := LOCAL

where A is a frequently used local variable used as & var pasrameter
to PROC, and used in nested procegure LOCAL. This method, although
limited in application, is elegant because no temporary-veriable
assignments have to be inserted.

Inprovement is two OF more Dytes per reference Of the frequently used veriedle in the mein
proceoure, less 2-8 Dytes per extra sssignment statement, subject tO register competition
&S noteg sbove. Since mMis opun:zauon can De spplied 10 very frequently used varisdles
that are sbandoned by the compiler, large optimizations of up to 40 or moTe Dytes are
possible in large proceoures. Difficulty ed likelynood Of erTers vith var parsmeter
sSstitution is low: difficulty end likelynood Of eITOTS vith nested procedures 1s
mocerate to high.

Don't use the set construct to check ranges; instead use
comparisons against the upper and lower bounds.

Getting rid of the set construct is a BIGC savings (typically sround 30 Dytes for the ususl
osouble—ended Tenge check). Difficulty is mininal, &S are the chences Of error.

Do not pass multi-word (more than 4 bytes) datae structures as
non-var parameters unless necessary. Change them to VAR
parameters.

Improvement is 12-18 bytes saved by not heving cooe to copy ™he paremeter into loca!l
storsge in the called proceoure. Difficulty 1S lov; likelyhood of errars is mooerately
low.

Replace FOR loops with WHILEs and REPERTs. The equivalent REPEATS
and WHILEs are tvpically 8 to 10 bytes shorter, even with the
explicit loop variable initialization and increments. REPEATs are
nore efficient than WHILEs which are better than FORs. Sometimes
the savings will be greater depending on the contents of the loops
and the termination condition.

Sevings are typically 8 to 14 bytes per construct. Difficulty end chences of erTor are
sMall (Just taike care to get your termination condition corrTect -- bevare of off-by-one
errors).

Convert array indexing in loops to pointer arittmetic, when the
total number of indexing operations can be reduced. For example

FORI := 170 100 DO A[I] := 3 comerts to

P := @R, {A's origin is 1; P is typed as “A[l]}
FOR I := 1 TO 100 DO

BEGIN

Pt = 3;

P := POINTER(ORD(P)+SIZEOF({R's element type}));

Pascal Code Crunchexr's Handbook Page 8

11.

12.

13.

14.

15.

16.

17.

END;

Improvement is up to 18 Dytes per index operation (moTe vhen the arrey origin is monzero
0r te srTay element size is not dyte; savings can be even higher on packed structures 1f
the progremmer is Vllllm L0 %00 & feY More CONTortions); difficulty is mooerate;
Uulm of errors is mogerate.

IFs without ELSE parts that have 8 conjunctive conditional (IF a
AMC b THEN ...) are more efficiently expressed as nested Ifs (IF a
THEN IF b THEN ...). 1In effect, this implements your own “short
circuit” boclean evaluation.

The savings is typically 4 Dytes for each AND eliminated. very essy to implement. Just
oon‘'t try it on ORs.

Avoid packed structures whenever possible. Remember, packing is
only useful when a large amount of data has to fit in a limited
space — 1t does not decrease the size of the code.

IMprovement is nignly variedle and can De vest. Difficulty is lov; likelynood of errors
is lov if Ticks like (10) 00 NOt pervade the code.

Repetition of expressions in the code should be removed by
pre-assigning & common expression value to a temporary veriable.

IMprovement is Nignly verisble. Difficulty is mooerate; likelynood of errors is low.

Convert procedure parsmeters to global or local variables when the
same actual value is always passed to the subroutine, and when
there is no recursion.

Improuament is 2-2 Dytes per parsseter seved. Bevare Of Cresting uwlevel aodressing of
'not' veriedles however (see (6)). Difsiculty is noserate; likelynoog of errors 1s low.

When groups of local or global variables are commonly passed ,
together as parameters, and are not 'hot’ (assigned to registers),
they could be combined into 8 single record, which would then be

passed as a var perameter to the subroutine.

Improvement is @ Dytes per psrameter, with mn overhesd of $ Dytes (warning, the called
proceaTe Aey grov in size if it airesdy uses all registers). Oifficulty is mooerate:;
llulm of erTors is low.

If you have several instances of the same string constant in vour
code declare it as & CONST, otherwise the compiler will store
nultiple versions of the same constant.

The savings depends on the size of the string end the mumder of ocourences. Easy to 9.

Turn range checking off efter a sufficient emount of testing has

Pascal Code Cruncher 's Hangbook Page ©

occurred.

Improvement is d-3 Dytes per reference Or €SSigment 0f & renge-checked quentity;
gifficulty is %0 lov: likelyhood Of €ITOTS iS fairly hignh since 8 sufficient smount of

:esting never oCCUrs. CONSIOLr MeKing this cnange oh & ProceoTe-Dy-proceaJre Contioence
evel Desis.

Pascal Code Cruncher's Handbook : Page 10

How to crunch code: some case studies

The following section presents some case studies demonstrating some of
the techniques presented in the previous section. These exsmples are
intended to demonstrate how some of the transformational technigues are
typically used and how 8 whole series of transformations may be applied
to a single body of code. The main purpose of the examples, however, is
to give a sense of the thought processes involved in crunching code.

If you have any good "before” and "after” examples demonstrating how .fat
code was reduced please feel free to contribute them. Your efrforts may
provide ideas and inspiration to others.

CASE 1:

Following is the original form of the body of a rouiine (SWpCh in the
Stdunit) which converts lower case characters to upper case. The code
size for the original routine was 94 bytes.

IFCh IN ['a'..'2"] THEN
SWpCh := CHR (ORD (Ch) - 32)
ELSE
SpCh := Ch;

The code above wes replaced with the following, which replaced the set
range test with two comparisons. The code for this version of the
procedure was 66 bytes — a savings of 28 bytes (sbout 30% or actually
nore, since these sizes include the overhead for the procedure and the
assignment statements). The moral here is that SET OPERATIONS ARE
EXPENSIVE.

IF ('a' <= Ch) AND (Ch <= 'z') THEN
SWpCh := CHR (ORD (Ch) - 32)
ELSE
StUpCh := Ch;

The following change was then made which saved another 2 bytes (bringing
the procedure size down to 64 bytes) by getting rid of the branch for
the ELSE logic on the IF statement.

&Uwh 2 Ch;
IF ('a' <= Ch) AND (Ch <= 'z') THEN

Pascal Code Cruncher's Handbook Page 11

SUUpCh := CHR (ORD (Ch) - 32):

A further change — breaking the AND in the IF into nesteg Ifs —
resulted in a 4 byte savings, lesving the procedure size at 60 bytes (an
improvement of 36% over the original S84 bytes). 1In effect this is
performing "short circuit” boolean evaluation at the source level. The
source for this version is as follows:

SUpCh := Ch;
IF 'a' <= Ch THEN
IF Ch <= 'z' THEN
SWpCh := CHR (ORD (Ch) - 32);

Note that this last transformation would not have worthwhile if we had
not already removed the ELSE part of the IF since the nested Ifs would
have required two ELSES.

CASE 2

Below is the bodv of the original version of SUUpStr which uppercases a
string.

FOR 1 := 1 7O LENGTH (S*) DO
$*{1] := SwipCh (S*[1]);

The following version — converting the FOR loop to & WHILE — saved 8
bytes.

1 :.=1;
WHILE I <= LENGTH (S°) DO
BEGIN
$°[1) := sWpCh (S*[1]);
I :=1+1;
END;

R further, time-oriented optimization would be to perform the
upper-casing in reverse order with the call to LENGTH outside the loop,
which also simplifies the termination condition to & test for zero.

An 8sIde: wwen sppropriate (vhen the 100p Dody will De executed at least once) & REPEAT will
saue another 2 bytes. 1 tested the three cOnStructs with three test procedures (ti, t2, t3) ss
follows:
procedure

var

J : integer:
begin

Pascal Code Cruncher's Handbook ; : Page 12

for j:= 1t i 0
foo := ber;
eng;
procedure t2:
ver
J - int :
begin o
J =3
while j = i 00
begin
foo := par:
Jiim jed;
o
end:
procecure t3;
vr
J ¢ 1nteger;
beqin

J =1
repest
f00 := Dar;

Ji= e
until j > i
ond;

TZ (WILE) saved 8 bytes over Ti (FOR), end T3 (REPEAT) saved 10 Dytes over Ti (FOR).

CASE 3

R series of small transformations was applied to the following segment
of TrimLeading (which trims leading blanks and tabs from & string).

FORI := 170 ORD (S*[0]) DO
IF (S"[1] = SUSpace) OR (S"[1] = SUTab) THEN
{ skip over leading spaces }
ELSE
BEGIN
DELETE (S%, 1, 1 - 1);
EXIT (TrimLeading);
END;
{ we fell thru — either '' or all blanks }

The first change was to change ORD (S*[0]) to LENGTH (S"), which saved 4
bytes. (I must have thought I was being clever in the original.)
Calling the built-in function saves code by leaving the array access to
~the built-in.

The next change was to get rid of the ELSE in the FOR loop by reversing
the sense of the condition (which resulted in the code below). This
last change resulted in no code size change since a short branch was
removed but another logical operator was added. But this prepared us

Pasceal Code Cruncher's Handbook Page 12

for some subsequent changes.

FOR I := 1 TO LENGTH (S*) DO
IF NOT ((S"[1) = SUSpace) OR (S"{1] = SUTab)) THEN
BEGIN { delete leading as soon &s we find a nor~blank Che&r }
DELETE (8%, 1, I - 1);
EXIT (TrimlLeading);
END;
{ we fell thryu — either '' or all blanks)

The next step was to apply de Morgan's lasw (remember your boolean
algebra?) to simplify the conditional to the following form which saved
2 bytes by reducing the number of boolean operations.

FOR 1 := 1 TO LENGTH (S*) DO
IF (S7[1] <> SUSpace) AND (S™[I] <> SUTab) THEN
BEGIN { delete leading as soon as we find & non-blank char }
DELETE (S*, 1, 1 - 1);
EXIT (TrimlLeeding);
Q‘D; -
{ we fell thru — either '' or all blanks }

Now we heve converted the conditional into a form in which we can apply
our short-circuit evaluation transformation by comverting the AND into
nested IFs, which saves another 4 bvtes.

FOR 1 := 1 TO LENGTH (8") DO
IF (S°[1] <> SUSpace) THEN
IF (S7[1]) ¢ SUTab) THEN
BEGIN { delete leading as soon as we find & non-blank char }
DELETE (S%, 1, 1 - 1);
EXIT (TrimLeading);
B80;
{ we fell thru — either '' or all blanks }

Finally we convert the FOR construct to & WHILE which saved another 8
bytes.

] := 3
WHILE I <= LENGTH (S") DO
BEGIN
IF S*[1] <> SUSpece THEN
IF S*[1] ¢ SUTeb THEN
BEGIN { delete leading as soon as we find & nor~blank char }

Pascsl Code Cruncher's Hanchook Page 14

DELETE (S*, 1, 1 - 1);
EXIT (TrimLeading);
END;
I :=21+ 1;
B8o;
{ we fell thru — either '' or all blanks)

CASE 4:

The following is applicable only to programs using WRITEs and WRITELNs,
but the general technique of factoring can be applied anywhere. The
section of code below prints out the defaults (volume, file name, and
extension) for a file name prompt.

IF Defvol & '' THEN

WRITE ('[', Defvol, '] ');
IF DeffN ¢ '' THEN

WRITE ('[', DeffN, '] ');
IF DefExt ¢ '' THEN

WRITE ('[', DefExt, '] ');

The following factoring out of the expensive WRITE operations resulted
in & savings of 168 bytes.

PROCEDLRE WriteDefault (DefaultvValue : SUStr);
BEGIN
IF Defaultvelue ¢> '' THEN
WRITE ('[', Defaultvalue, '] ');
8O,

Giiteoef‘ault (Defvol);
WriteDefault (DeffN);
WriteDefault (DefExt);

CASE 5

“Factoring” of common code does not always pay off. Following is an
instance of how space was saved removing factoring. The SUStrTolnt
conversion routine had an internal procedure called BogusNumber which
set the value of the CState paremeter to the appropriate error return
code and then exited from SUStrTolnt:

PROCEDURE BogusNumber (CS : ConvNState);
BEGIN

Pascal Code Cruncher's Handbook ' Page 15

CState := CS;
EXIT (SUStrTelnt);

END;

BogusNumber was called 6 times in the original SUStrTolnt. By replsacing
the calls to BogusNumber with BEGIN CState := ExrrCode; EXIT(SUStrTolnt)
BND we got rid of the 30 byte BogushNumber routine and the size of
SUStrTolnt when down from 500 bytes to 3680 bytes, a total saving of 170
bytes. The moral here is to CHECK YOUR FACTORING TO SEE THAT IT REALLY
PAYS OFF.

The Last Whole Earth
Text File Format

Fred Forsman

This is the latest proposal for the definition of text files. In cresting
this definitiorn I had thres (not always convergent) goals in mind.

1) Text files should support Pascal's model of files of type
TEXT as well as possible —- that ig, if & file was
written by Peascel WRITEs and WRITELNs it should be &
velid text file with as few exceptions as possible.

The intent here i to Qiwe reasonable support to Psscal's TEXT mechanicm s
it ic defired I1n the lenguage -- while the lerguege Mekes Mo statement et
the form of TEXT files, ore would expect that flles vrnten witheut errors
will result in valid text files Of some sort. Thls is not to S8y that 81l
tole ehoulo W{(r'(every perverse file that can be gener&ated Vie Pec8l
text I/D. At & minimum however. the Pascel run-time system shoulo be a:
acoOmI03TINg 8¢ leSSlDle in it suppo" 0f Paseal TEXT 10, enc the editor

should should make similar efforts since it is the device must oftern used to
inspect text files (Whethrer rormal Or sberrant).

2) To make the processing of text files as streightforward
and efficient as possikle.

31 To be compatible with the UCSD text file formats in the
Pascal svstems on the Apple II and Rpple ///.
The fallowing gefinition follows the UCSD text file format fairly closely.
The One OF T/0 O2viatione 00N’ 1 prse 8 wery Serious threat to competibillty

since they 1nuolue sbnormal case: which are not likely to be encountered or
gererated in NOYMKl pratice.

The following definition involves compromises to all of the above gosls. The
determination of which gnal has been mozt violated I leave ac &n exercise to
the reader.

The definition of a text file:
« A text file is a sequence of 1024-byte pages.

= QOne 1024-byte header psge is present at the beginning of
the file. This is not considered to be part of the
actual contents of the text file, but is used by the
editor to store formatting information, etc. ARnvone
creating a header page should do so with nulls in all
1024 bytes, unless there is a good reason to do
otherwise. (The format and interpretation of the header
page will be described in a forthcoming document.)

2E-pctober-83 Text File Formst-1

T - - -
Jnterngls & Confidentsis]

« Each text page (1.2., those following the header page)
contains some numiceY of complete lines of text and is
filled with null characters (ASCII O) after the last
line.

The Pascal run-time sy< tem should ensure that all text files end with & CR
when CLOGEQ, in particular, dealing with the case where the lest action
before the CLOSE was & WRITE instesd of a WRITEWN. Similarly, the run-time
systm should 8l1sn ernsuyre that page> terminste vith CRs even if Ammmately
lorg 1ines are written Dy & ceries of WRITES withow? oy WRITEINS (NCwever

determining when to insert & CR can be & tncky 1ssue). (For more on
related issues, see the following two points.)

» The end of 8 text page must terminate with at least one
null. For simplicity, the first instance of & CR-null
sequence will signal the end of the page.

AC 3 consequeance of Mis simplitying essumption. 8 WRITELM followed by 2
WRITE (CHR (0)) will irmovertently termirate the current pege, but anyon2

mnmq mJlls to a text flle 1¢ XlUlﬂJ in & state Of sin e deserves what
they get.

TO D2 on the safe cide, o002 Jealing with text files at the BLOCKREAD lewsl
should not assune that 3 final CR-null alweys exists, ma!ing 3ure hot to Tun
off the end of psge buffers. (ur tools should not blow up on invalid input.

= A line is a sequence of zero or more characters followed
by a ZR. R line may be "srbitrarily long" (1023 bytes
long, counting the CR, with room for a terminating null
at the end of' the pagﬂ but programs (such as development
system tools) may choose to consider as significant only
tre first A characters [where N iz 8 reasonable and well
documented rumber 1.e. either 132 or 255).
The Pescal Tun-time system should sllov the reamng and wrxnng of

ardi U&Ylly 1mg lmo Thwe contents of 8 long 11n2 should b2 obteinable

vig 3 series of RERDs. The action of READIN should bDe to resd past the rext

CR. returning a&n IORESULT warning value if charscters sre skipped in the
process.

Support of "arbitrarily long® lines should not be viewed 8s a threst to tool
implementors. Toole may heue resconable restrictions on what text filec
they choose 10 8CCept, & 10ng 85 they don't Dlow Up on other text files.
Tools may chocse to igrore the excess of UTessonsbly lomg lines, give &
waIrning, or signal sn error and abort processing.

s f sequence of spaces at the beginning of & line ma. be
compressed into a two-byte code, namely 8 OLE charscter

(ASCII 16) followed by a byte containing 32 plus the
nunber of spaces represented.

= Anull text file (i.e., one which has no contents -- as
might be crested by opening a file and then closing it
before anything is written to it) consists of only the
1024-byte header page.

25-Crtober-83 : Text File Formst-=

Pascal's Packing Algorithm

Packed Recards

Packed records are very expensive in terms of the number of bytes of code
generated by the compiler to reference & particular field. In general, you
should avoid packing records unless there will be many more instances of the
Yecord than there are references to it. Packed records are packed in the
following bizarre way:

1. Fields are packed as tightly as possible without crossing word boundries,
starting at the low-ordered bit of the first byte. (Note that in a
packed record, & character or 0..235 fits into a byte.) Records will
always occupy either one byte or an even number of bytes.

Note that only scaler values and subranges are considered packsble;
everything else must go on & word boundry.

For example, 4 booleans and & set are packed as follows:

evre 1 o o 8YTE 2 o 9 BYte 3 BYTE 4

4131211 set

2. Any empty bytes are filled by moving the previous field into the empty
byte if:

- The field fits into & byte.
- The field was not previously on a byte boundry.

ovTE 1 BYTE 2
31211 . 4 set

0 BYTE 4

3. Rny field that fits in & byte or word and does not share that space with
other fields is now designated "unpacked".

- Any field that is still considered "packed, " and is closest to the high
end of & byte or word, is moved to the high end of that space.

svie 1 o 2 BYTE 2 o ? evTE 3 o 7 BYTE 4 0
3 211 4 set

?

4. The last field is treated after steps 2 & 3 have been completed on the
other fields.

13- January~864 Fackirg-1

Internsls & Confidentis?

5. Finally, bytes containing packed fields are flipped (bits reordered).

2 gye 1 0o 2 BYTE 2 BYTE 3 0 27 BYTE 4

112 3 4 set

The following is a (slightly) simpler description of what appears to happen
when packed records are packed, if you don't need to know the actuel process.

1. Fields are packed as tightly as possible without crossing word boundries,
starting at the high-ordered bit of the first byte.

A1l packed records take up either one byte or an even number of bytes.

Only boolean or subrange types can be packed; 81l other types start on
word boundries, so steps 2 and 3 only apply to these types.

2. I1f a byte would be left empty (so the next field can start on a word
boundry), and there is more than one field in the previous byte, the last
(low-ordered) field is moved into the empty byte.

3. The last (low-ordered) field in any byte with unused space is moved to

the low end of the byte. (This happens even if it's the only field in
the byte.)

Unpacked Recards

Fields of unpacked records are packed in order, starting on word boundries,
except for booleans and subranges that can fit in & byte. Values that don't

take up & full byte or word will be packed at the low-ordered end of that
space.

The whole record will take up either one byte or an even number of bytes.

For example, & record containing a subrange of 0..13, two integers, and a
boolean would be packed as follows:

? BYTE 1 0 7 evE 2 o 7 evre 3 0 7 BYTE 4 0
0.15 4——integer 1 —»

? BvTE 5 0 7 evTe 6 o 7 evre 7 0o ? evTe 8 0

¢—————integer 2———F B

13- January -84 Facking-2

Internsls ;) & Conlidentis’

Packed Rrrays

Packed arrays are also code-expensive, except for packed arrsys of char.
(These m)'e treated as a special case, and the code associated with them is
compact .

The number of bits per element in a packed array is the smallest of 1,2, 4,8 or
16 bits that will accommodate the element. For exemple, & subrange of column
R requires the number of bits per element in column B:

A £
0..1 1
0..2 2
0..3 2
0..4 4
0..10 4
0..20 8
0..255 8
0..395 16

Booleans are packed one boolean per bit. The packed array as & whole must
occupy an even number of bytes. :

A packed arrsy[1..35]) of boolean would be packed as follows:

evit 1 BYTE 2 0
51413]12]1

R packed array[1..5] of [0..6] would be packed as follows:

BYTE 1 BYTE 2 BYTE 3

&2) e(1) o4) | &3 &%)

You can use the ® operator to poke around inside any packed value and thereby
discover what the packing algorithm (probably) is.

Signed Subranges

Signed subranges (e.g. -5..14) are packed in packed types (unlike UCSD Pascal,
which won't pack them). The minimum field size for a signed subrange is the
minimum number of bits needed to represent any number of the subrange in two's
complement form.

The minimum field size is then subject to the rules for a particuler packed
type. For example, though -1..2 only needs three bits, if it's in & packed
arrey, it will take up four (see above table). If it's in a packed record, on.

13- January~64 : Fscking-3

Internals & Confidential

the other hand, it might take up only three bits, or it might use & whole
byte, depending on what's packed around it.

NOTE

A variasble of type -127..128 takes up a byte.
A variable of type 0..235 takes up & word.
A variable of type char tekes up 8 word.

13- January -84 Fecking-4

PASLIB Procedure Interface

(Workshop Release 1.0)

PASLIB is the Pascal run-time support library. It provides the procedures end
functions that ere built into the Pascel language, acts as the run-time interface to
the Operating Systemn, and “"completes” the 68000 instruction set by providing routines
for the compiler-generated code to call upon in lieu of actuel hardwere instructions.

The interface to PASLIE is very tightly coupled with the Pascal compiler, and
is very likely to be changed to improve performance and reduce code size. For
this reason, only call these routines from assembly language if you absolutely
and positively have to; stay in Pascal as much as possible when desling with
PASLIB. Most of these routines support the Pescal built-in procedures, which
are described in deteil in the Fascal Relerence Manual.

There ere e few conventions for using these routines, which must be followed
to ensure correct results end successful execution. Rll the routines are
called with parameters passed on the stack. The pearemeters &re pushed onto
the stack in the order of the paremeter list shown in each routine. 'ST.L'
indicstes a four-byte paremeter, ‘ST.W' two-byte, ‘ST.B' one-byte (stored in
the upper byte of & word), and 'ST.S' a set. The psrameters passed will be
popped by these routines before return. The function results, if any, will be
returned on the steck after the paremeters are popped out. Note that the
functior—type routines do not expect room for the function result to be
reserved on the stack before the call. Also note that these routines do not
check for room on the stack; the caller must guarantee enough room on the
stack for saved registers. The caller should follow the Pascel procedure
preamble code for expanding the stack before calling these routines. Standard
register preservation conventions ere followed except in the routines
indiceted. Refer to the klborkshop User ‘s Guide for the usage of the special
registers and the stack frame allocation.

Contents
1. Initialization and Termination Routines 2
2. Integer Arithmetic Routines 3
3. Data Move and Scan Routines eeaeeee e 4
4. String Manipulation Routines 6
5. String Comparison Routines 8
6. Set Manipulation Routines 8
7. Miscellaneous Routings ittt nnnn 10
8. Range Check Routines 11
0. Heap Routinescciii it iennnnn. 12
10. Read and Write Routines 15
11. File I Routines ittt ittt e e ie . 22

27-January-84 FRSLIG-1

Internsls & Confidentisl

1. Initialization and Termination Routines: X BEGIN, % END, % _INIT, % TERM

None of these routines heve paremeters, return values, or destroy any
registers.

Every main progrem must hsve the following beginning and ending seguences
calling these routines:

BR %_BEGIN ; beginning sequence

LINK A6, #$0000 ; no-op for LisaBug, to look like standard module
head

MOVE.L (R7)+, A6

LINK AS, #30000 ; set up global frame for main progrem

SUBA.L $0010(R3), A7 ; variables for units, etc. passed by loader

XR %_INIT

; main progrem code goes here

R %_TERM ; ending sequence

LNLK RS .

R %_END

RTS

WUNLK A6 ; no-op for LisaBug, to look like standerd modul-
tail

RTS

Note that the size of the progrem global variables sllocated to the loader
is offset +16 from register RS.

%_BEGIN - Beginning routine. Currently a no-op;, reserved for future
extensions.

%_END - Ending routine. Currently & no-op; reserved for future extensions.

%_INIT - Initializes PASLIB internal global data for each process:

1. Sets up an f-line trap routine, which signals & “sys_terminate"
exception if an f-line trap is encountered in the user code,
terminating the progrem.

2. Sets up global input and output file buffer addresses. These
buffers are used for screen, keyboard, exec files and output
redirection. The address locations are fixed on the stack: the
input buffer address is offset +8 from register A3; the output
buffer address is offset +12. They are set up to point to globsl

27-January -84 FRSLIG-2

Internsls & Conlidentisl

file buffers in the shared data ares of PRSLIB.
3. Initislizes the OS exception handlers.
4. Initializes the Pascal heap local veriables.

NOTE: The %_INIT routine will restart at step 5 if the calling process
is a resident process.

5. Initializes the PASLIB locel variables.
6. If the -floating-point library IOSFPLIB is linked, it is
initialized.

%_TERM - Terminate. If the process is resident, it junps to step 5 of
%_INIT (see asbove), if not, it cells the 0S5 routine "Hit_Eng" to
terminate the process. Control does not return after this csll.

2. Integer Arithmetic Routines: XI_MA4, XI_DIV4, XI_MID4
%I_MUL4 - Multiply two 4-byte integers

Parameters: ST.L - Argurent 1
ST.L - Argument 2

Returns: ST.L - Product
Registers used: ARll registers are preserved.

The multiplicatior algorithm is as follows:

-argument 1's upper word is multiplied by argument 2's lower word.

-argument 2's upper word is multiplied by ergument 1's lower word.

-these two products are added, and the sum is put in the result’s
upper word.

~-the two arguments' lower words are multiplied, and this value is
put in the result's lower word.

J7=-Jenuary-84. | FRSLIB-3

Internsls & Confidentisl.

%I_DIv4 - Divide two 4-byte integers

Perameters: ST.L - Dividend
ST.L - Divisor

Returns: ST.L - Quotient

Registers used: Rl11 registers are preserved.

The division is performed by subtracting the dividend from the

divisor 31 times (for each of the 32 bits except the sign bit).
%1_MOD4 - Remainder from the division of two 4-byte integers

Parsmneters: ST.L - Dividend
ST.L - Divisor

Returns: ST.L - Remainder
Registers used: ARl]l registers are preserved.

The division is performed in the seme way as %I1_Dlv4, above.

3. Data Move and Scan Routines: X_MOVEL, X _MOVER, X_FILLC, X _SCANE, X_SCANN
% _MOVEL - Moveleft
Parameters: ST.L - From Address
ST.L - To Address
ST.W - Number of bytes to move
Returns: —
Registers used: DO, D1, D2, RO, A1, A2
If the number of bytes to move is 7 or less, they are moved & byte
at a time. If the source address + 2 is the destination address,
the data is moved one word at a time. If there are more than 7

bytes to be moved, then data is moved & long word at a time. If
the ending asddress is a byte address, the trailing byte is moved.

27-January-94 FRSLIEG-4

Internals & Conlidentis.l

~%_MOYER - Moveright
Paremeters: ST.L - From Rddress
ST.L - To Address
ST.W - Number of bytes to move
Returns: -——
Registers used: DO, AO, A1, R2

Data is moved one byte at & time.

%_FILLC - Fillchax
Parameters: ST.L - Rddress to fill

ST.W - Number of bytes to fill
ST.W - Fill cheracter

Returns: _—
Registers used: DO, DI, RO, R2

Fills the address with the given character one byte st & time.

%_SCANE - Scan equal
Parameters: ST.W - Length to scan
ST.W - Charscter to scan for
ST.L - Rddress to scan

Returns: ST.W - The pgfition of the character (0 being the
first

Registers used: Rll registers axre preserved.
Scans the string for the given character, one byte at & time.

Note that “Length to scan” can be negative, and the scan will go
in the lower address direction.

27-Jenusry~-84 FRSLIB-5

Internals & Conlidentis’

%_SCANN - Scan not equal
Perameters: ST.W - Length to scan
ST.W - Character to scan for
ST.L - fAddress to scan
Returns: ST.W - The first character position that is not equsl
to the character to scan for (O being the
first)
Registers used: All registers are preserved.

Scans the string for the first character not equal to the given
character, one byte at a time.

Note that "Length to scan" can be negative, and the scan will go
in the lower address direction.

4. String Manipulation Routines: ¥ _CAT, %X_POS, X COPY, X DEL, X_INS

All the string manipulation routines are performed one byte at a time.

%_CAT - Concsatenate

Rddress of 1st string
Address of 2nd string

Paremeters: ST.L
ST.L

.L - Address of Nth string
ST.L - Address to put result
STW-N

Returns: -—
Registers used: Rll registers are preserved.

Copies 811 the given strings to the result string.

27-J6ns8ry~-84 ARSLIB-5

lnternsls

& Conlidentisl

% _PUS - Position of one string in another

Paremeters: ST.L - Address of substring
ST.L - Address of main string

Returns: ST.W - Position

Registers used: Rll registers are preserved.

Compares the substring with the main string until a match is
found. If no match is found, O is returned.

Copy & substring

Peremeters: ST.L - Source string sddress

ST.W - Starting index
ST.W - Size to copy
ST.L - Rddress of result

Returns: -—
Registers used: All registers are preserved.
If the number of bytes to copy is 0, or if the source string is

longer than the number of bytes to copy, the result string has O
lenth.

% DEL - Delete a substring from a string

Perameters: ST.L - Rddress of string
ST.W - Position to start deleting
ST.W - Number bytes to delete
Returns: ——

Registers used: DO, D1, D2, D3, RO, Rl, A2

%_INS - Insert one string in another

Parameters: ST.L - Address of string to insert
ST.L - Address of main string
ST.W - Position in main string to insert

Returns: ———

Registers used: DO, D1, D2, D3, A0, Rl, A2

27=Isnusry -84 FRSLIB-7

Internsls & Contidentisl

5. String Comparison Routines: XS_EQ, XS_NE, XS_LE, %S GF, XS_L7T, %5 GT
Rll the string comparison routines are performed one byte at a time.

%S_EQ - String equal
%S_NE - String not equal

%S_LE - String less than or equal
“S_GE - String grester than or equal
%S_LT - String less than

%S_GT - String greater than

Parsmeters: ST.L - Address of first string
- ST.L - Rddress of second string

Returns: S7.B - Boolean result

Registers used: Rl] registers are preserved.

6. Set Manipulation Routines: X_INTER, %_SING, %_UNION, X_DIFF, %_RDIFF,
X RANGE, X_fDJ, % _SETGE, % SETLE, X _SETEQ,
X SETNE

The format of a set on the stack is:

e + high saddress
| 15-0 |

o o e e o +

| 31 - 16 |

—————— —_—

| |

e e e e o e e +

|last word|

P————————

| # Bytes |

——— e e + low address

J7-Jenuvary-84 ASLIG-8

Internsls & Confidentis’

%_INTER - Set intersection: setl AND set2
% _UNION - Set union: setl OR set2
% DIFF - Set difference: setl AND (NOT set2)

%_ROIFF - Reverse set difference: (NOT setl) AND set2

Parameters: ST.S - First set
~ST.S - Second set

Returns: ST.S - Result set

Registers used: Rll registers are preserved.

% SING - Singleton set
Parameters: ST.W - Singleton value
Returns: ST.S - Result set

Registers used: All registers are preserved.

% _RANGE - Set range

Parameters: ST.W - Minimun value
ST.W - Maximumn value

Returns: ST.S -~ Result set
Registers used: Rll registers are preserved.
Returns the set representation of the values from minimun to
maximun. If minimum is greater than maximum, & null set 1s
returned.

%_RDJ - Set adjust

Peremeters: ST.S - Set
ST.W - Desired size in bytes

Returns: ST.S' - Adjusted set without size word

Registers used: Rll registers are preserved.

Changes the size of a set to the given size. If the set is larger
than the desired size, the extra values are thrown out; if the set

is smaller thar the desired size, extrs fields are added end
initialized to O.

27-28nu8ry -84 FRSLIG-¢

lnternsl s

& Confidentisl

%_SETNE - Set inequality test
% _SETEQ -~ Set equality test
%_SETGE ~ Set inclusion test (returns true if set2 is the same as or

included in setl)

% _SETLE - Set inclusion test (returns true 1f setl is the same as or

included in set?2)

Paremeters: ST.S - First set
ST.S - Second set

Returns: ST.W - Boolean Result

Registers used: All registers are preserved.

7. Miscellaneous Routines: %_GOTOXY, % _GOTO, X HALT

%_GOTOXY

%_GOTO -

- Move the cursor to a specified location

Perameters: ST.W - X coordinste
ST.W - Y coordinate

Returns: _—
Registers used: DO, D1, D2, D3, RO, Rl, A2

%_GOTOXY sends the following escape sequence to the screen to move
the cursor position: ESC

Y+32
%+32

Y values are between O and 31; X values between O and 79. If tre

coordinate given is outside these bounds, it is set equal to the
boundry value.

Global GOTO code segment remover

Pearameters: ST.L - Pointer to the desired last-segment jump table
Returns: -—

Registers used: RO

Jumps from & nested routine to the first-level process.

27-January-64 FRSLIG0

Internsls , & Conlidentia.

%_HALT - Halt

If the process is resident, it goes to step 5 of the %_INIT
routine. If not, it calls “terminate_process" with the value of
event_ptr as nil. Control does not return after this call.

8. Range Check Routines: X _RCHDX, X_SROHK
%_RCHCK - Range check, to check the bounds of subrange type variables

Paremeters: ST.W - value to check
ST.W - Lowexr bound
ST.W - Upper bound

Returns: -
Registers used: Rll registers are preserved.

Note that if the check fails, this routine causes the system
exception 'SYS_VALLE_OOB' to be signalled and the message 'VALLE
RANGE ERROR' to be displayed before the process is forced to enter
the debugger. 1f the process hes not declared an exception
handler for this exception, the system default handler is entered
after the debugger returns control. The system default hendler
terminates the process.

%_SRCHK - String range check, to check a string index agsinst its length

Paremneters: ST.B - Value to check: 0..255
ST.W - Upper bound

Returns: _—
Registers used: Rl]l registers are preserved.

Note that if the check fails, this routine causes the system
exception 'SYS_VALUE_OOB' to be signalled and the message ‘ILLEGAL
STRING INDEX' to be displayed before the process is forced to
enter the debugger. If the process has not declared an exception
handler for this exception, the system default handler is entered
after the debugger returns control. The system default handler
terminates the process.

27-January-84 FR5LIG6-11

Internals & Confidentisl

9. Heap Routines: %_NEW, X MARK, X _RELSE, X MEMAV, X HEAPRES
%_NEW - The New procedure. Allocate memory in the Pascal heeap.

Parameters: ST.L - Rddress of pointer
ST.W - Number of bytes needed

Returns: —-—
Registers used: DO, D1, D2, D3, RO, Rl A2
%_NEW sets the address of the pointer to nil.

%_NEW checks whether the heap has been initialized (whether a dats
segment has been allocsted) via the boolean Hesplnited. If
HeaspInited is false & call is made to the GrowHeap function to
create and initialize a 'new heap'. If GrowHesp is unsuccessful
(returns false) then % _NEW 1is exited with the pointer set to nil.

The GrowHesp function initializes & 'new heep' by celling the
PLInitHeap procedure. Growhesp passes PLInitHeap the size of
the Pascal heap data segement, the memory size (HeapDelte) and
the logical data segment number (LDSN = 3). PLInitHeap then
creates a8 private data segment with the pathname PascallHeap,
and assigns the segment pointer address to the pointers
HeapStart and HespPtr. PLInitHeap sets the pointer HeapEnd to

point to the end of the segment (HespStart + segment size -
256).

Before assigning an address to the pointer, % _NEW determines
whether there is enough room on the heap (i.e. in the data
segment} for the variable. %_NEW makes & second csall to the
GrowHesp function. If GrowHeap is unsuccessful, then %X_NEW is
exited with the pointer set to nil.

The Growieap function calls the GetSafeAmmount procedure to
determine the maximum number of bytes by which the heap can be
increased (the amount of system memory available to the calling
process). If this emount is greater than the current size of
the heap, then GrowHeap will double the size of the heap,
otherwise GrowHeap will increase the heasp to the maximum amount

available. The pointer HeapEnd is incremented by the emount of
increase.

%_NEW then sets the address of the pointer to the address of
HeapPtr, which points to the next free area on the heap. The

address of HeapPtr is increassed by the size of the variable that
was placed on the hesp. v

27-Jaruary-64 FRSLIB-12

Internals & Confidentis]

% _MARK - The Mark procedure. Mark the Pascal heap.

Parsmeters: ST.L - Rddress of pointer to be marked
ST.W - Nunber of bytes needed

Returns: -——

Registers used: DO, D1, D2, D3, A0, R1, A2

% _MARK checks whether the heap has been initialized via the

boolean HeaplInited. If Heaplnited is false, & call is made to the

GrowHesp function to create and initiaslize & 'new hesp'. If the

function is unsuccessful (returns false) then % _MARK is exited.
The GrowHeap function is described under % _NEW, above.

% MARX sets the address of the pointer to the address of HeapPtr,

which points to the next free area on the heap.

% _RELSE - The Release procedure. Release the Pascal heap.

Parameters: ST.L - Address of pointer to release to.

Returns: -—

Registers used: DO, D1, D2, D3, A0, RAl, A2

%_RELSE checks whether the heap has been initialized vis the

boolear Heaplnited. If Heaplnited is false. & call is made tc the

GrowHesp function to create and initislize & ‘new hesp'. If

GrowHesp is unsuccessful (returns false) then %_RELSE is exited.
The GrowHeap functicn is described under % _NEW, sbove.

If the pointer does not point within the heap (i.e., address

memory between HeapStart and HeapEnd), an error will result and

the procedure will be exited.

If the pointer is less than HespEnd minus HeapDelts, (where

HeapDelta is the original size of the heap) the heap is reduced in

size by HeapDelts.

% RELSE sets HeapPtr (which points to the next free areas on the
heap) to the address of the pointer.

27~ J8ris8ry -84 FRSLIB-15

Internsls ; ® Confidertisl

% MEMAY - The Memavail function. Memory Aveilable in the Pascal heap.
Pearsmeters: None.

Returns: —
Registers used: A1l registers are preserved.

% MEMAY generates a call to the % _PHMordsfvail function, which
determines the amount of words evailable.

%_PHordsfvail checks whether the heap has been initialized vis
the boolean Heaplnited. If Heaplnited is false @& call is made to
the GrowHeap function to create and initialize a 'new heap'. 1f

GrowHesp is unsuccessful (returns false) then % PHwWordsAveil is
exited.

The GrowHesp function is described under % _NEW, sbove.

% _PHiordshvail determines the maximum nunber of words svailable
(the smount left in the heap data segment minus the maximum aemount
of system memory available) and the current number of LDSN words
available (the maximum number of words you can get by the chosen
LDOSN minus the number of words already used). If the meximum
number of words available is greater than the current number of
LDSN words available, then the current number of LDSN words
available is returned, otherwise the maximum number of words
available is returned.

% HEAPRES - The HeapResult function.
Paremeters: ST.W ~ Heap result
Returns: -
Registers used: Rll registers are preserved.

Refexr to the Aorkshop User's Guide for the values of the heap
Tesult.

%_HEAPRES genersates a call to the %_HHeapRes function. %_HHeapRes
is assigned the integer value of HErrResult.

27— January-84 FRSLIB- 14

Internals & Contidentis]

10. Read and Write Routines: X _KEYPRESS, %WW_LN, %W C, %W STR, W _PAOC, W _1I,
: ‘ WB XPAGE, WL, WI, R STR R _PAOC,
F_IN, X EDIN
All the read and write routines take 'file address' as & paraméter, which

is the address of the file variable. The address of the Pascal standexd

input is in offset B from register A5, the address of output is in offset
12 from RS5.

% _KEYPRESS - The Keypress function.
Paremeters: ST.L - File address
Returns: ST.B - Boolean Result
Registers used: Rll registers are preéerved.

Note that the file address is not used in the current implement s-
tion.

%_KEYPRESS generates a call to the % _PreyfFress functlon and
returns the result of % PKeyFress as its result.

The %_PKeyPress function determines whether any keys have been

pressed. It returns true if the look-ahead buffer is full,
otherwise it returns false.

%_LN - WriteLn
Peremeters: ST.L - Address of output file
Returns: -—-
Registers used: DO, D1, D2, D3, A0, R1, R2
%i_LN cells the Furiteln procedure, passing it the address of the

file. Fuwriteln calls the FuriteChar procedure, passing it an
ARSCII <CR> (end-of-line) to be appended to the string.

27~ JENUEYy -84 FRSLIB-15

Internsls & Confidentisl

%_C - WriteChar. Displaey & character on the console.

Peremeters: ST.L - Address of output file
ST.B - Character to be output
ST.W - Size of field to print

Returns: ——
Registers used: DO, D1, D2, D3, A0, A1, A2

%4 _C cells the FWriteChar and OutCh procedures to write a
character to the file. %W_C passes OutCh the character to be
written and the address of the output file. OutCh then calls
FiWriteChar to write the character to the file.

The default field size is 1. If the field size is grester than |,
7H_C cslls FuriteChar to write out the appropriate number of
spaces, then calls OutCh, which calls FWriteChar to write the
character.

%i_STR - Urite string

Parameters: ST.L - Address of output file
ST.L - Address of string
ST.W - Size of field to print

Returns: -—
Registers used: DO, D1, D2, D3, RO, Ri, R2

If the string size is greater than 255 characters, then “W_STR
truncates it to 255.

%4_STR then compares the field size (MinWidth) to the specified
string size. If the field size is less than or equsl to zero,
it's set to the string size. If the field size is less than the
string size (but greater than zexo), then the string size is set
to the field size. If the field size is greater than the string
size, then a call is made to the FuWriteChar procedure to write out
[MinWidth minus string size] spaces.

%4_STR then calls FuriteChar to write out the string with the
specified string size.

27-January-64 FRSLIG-15

Internsl s & Conlidentiel

% _PAOC - Write a packed array of characters

Parameters: ST.L - Address of output file

ST.L - Address of string
ST.W - Rctual length
ST.W - Size of field to print

Returns: —_—
Registers used: DO, D1, D2, D3, RO, Ri, R2
The effect of %W_PROC is the seme as calling W_STR with the
specifed field size equal to the number of elements in the arrsy.
%_1 - Write an integer -

Pareameters: ST.L - Address of output file

ST.L - value to print

ST.W - Size of field
Returns: _—
Registers used: DO, Di, D2, D3, RO, A1, AZ
%i_1 compares the field size (MimWidth) to the size of the
integer. 1If the field size is grester than the size of the
integer, then %W_I calls the FWriteChar procedure to write out
[MirWidth minus integer size] spaces.

%i_1 then calls FWriteChar to write out the integer with the
specified integer size.

S7-JenUBT) -84 FRSLIB-17

Internals & Confidentisl

7N_B - Write a boolean
Perameters: ST.L - Address of output file
ST.B - value to print
ST.W - Size of field
Returns: -—
Registers used: DO, D1, D2, D3, A0, A1, A2
74 _B calls the %W_STR procedure, passing it the string to be
written, the size of the string, and the address of the output
file.

If 'value to print' is zero, %W_B pesses the string 'FALSE' to
%N_STR, with a string size of 5.

If ‘velue to print' is 1, *W_B passes the string 'TRE' to %W_STR,
with a string size of 4.

%W _STR then writes the string to the output file.

%_PARGE - Page procedure
Parameters: ST.L - Address of output file
Returns: -
Registers used: DO, D1, Dz, D3, A0, A1, A2
%_PAGE writes the ARSCII character 'FF' to the output file by

calling the OutChar procedure. OutChar is passed the character to
be written (e.qg. 'FF') and the address of the output file.

27-January-64 FRSLIA ¥

Internsls) & Configentie!

R_C - ReadChar
Peremeters: ST.L - File Rddress
Returns: ST.B - the character read
Registers used: DO, D1, D2, D3, A0, A1, A2

%R_C reads & character from the specified file by calling the InCh
function, then returns the character on the stack.

InCh calls the FReadChar function, passing it the file sddress.
FReadChar verifies that the file has been opened, calls the
FGet procedure, reads the character that is placed in the

window buffer eres by FGet, and passes the character back to
InCh.

YR_LN - ReadlLn
Perameters: ST.L - Address of input file
Returns: —_—
Registexrs used: DO, D1, D2, D3, RO, R1, R2

%F_LN resds & line from the specified file by calling the FReadln
procedure, passing it the file address.

FReadlLn verifies that the file has been opened and then calls
the FGet procdure to read each character on the line until EOLN
is true. When EOLN is true, FReadLn resets EOLN to false and
returns to XZR_LN.
%R_PAOC - Read Packed Rrray of Character
Parameters: ST.L - File Address
ST.L - Arrey Address
ST.W - Size of array in bytes
Returns: -_—
Registers used: DO, D1, D2, D3, RO, R1, R2

The effect is the seme as calling *R_STR whose specified field is
the number of elements in the array.

27-January-84 FRSLIS-1%

Internals _ & Confidentisl

% _STR - Read String

Perameters: ST.L - File Address
ST.L - String Address
ST.W - Max size of string

Returns: -—
Registers used: DO, D1, D2, D3, A0, A1, A2

R_STR first verifies that EOLN is false, otherwise %R_STR returns
to the calling routine.

“R_STR then generstes a loop which reads & character from the file
by calling the InCh procedure (described under *R_C, asbove), then
checks whether EOLN is true. If EOLN is true, *R_STR returns to
the calling routine. If EDLN is false, %XR_STR resds the character

and returns to the beginning of the loop to read the next
character.

After InCh returns a character, %R_STR checks whether the
character is & RUBOUT (ASCII 'DLE') or BACKSPACE (ASCII 'B8S8'). 1If
the cheracter is either of the two, *R_STR processes the character
accordingly and then reads the next character. If the character
is not RUBOUT or BACKSPACE, the character is read and “R_STR
Yeturns to the beginning of the loop to read the next character.

%R_1 - Read Integer
Parsmeters: ST.L - File Address
Returns: ST.B - The integer read

Registers used: DO, D1, Dz, D3, A0, R1, A2

“R_1 consists of two mein loops which reads characters from the
file to form & valid representation of an integer value.

The first loop reads & character from the file by calling the InCh
procedure (described under %R_C, above). If this character is
{CR> or space, ‘R_I returns to the beginning of the loop to resd
the next character. If the character is not <(CR> or space, “R_I
exits the first loop.

Next, %R_1 determines whether the character read is 8 sign

character ('+' or '='). If it is, %R_I enters the second loop and
calls InCh to read the next character. If the character is not 8

27-Januery-84 FPRSLIB- 20

Internsls

%_EOLN -

& Confidentis.l

sign character, “R_I enters the second loop bypassing the call to
InCh.

The character is then checked to see if it's &8 RUBOUT or BRCKSPRIE
character; if it is, the character is processed accordingly and
%R_1 returns to the beginning of the first loop.

The character is checked once more to determine if it is s valad
integer value (0 ¢ character ¢ 9). If it is, *R_I returns to the
beginning of the second loop and calls InCh to read the next
character.

If the character is not a valid integer, then “R_I checks to see
if any characters read previously have been valid integers (by
checking register D6). If no characters have been valid integers
(D6 = 0?, then %R_1 gererstes an I0Result exrror. If the chexacters

read previously heve been valid integers (D6 =1), then %&_1
returns to the celling routine with an integer result.

End of line predicate
Parameters: ST.L - File sddress
Returns: S7.B - Boolesan Result

Registers used: All registers are preserved.

% EOLN returns true if the end of & line has been reached in the
specified file. ’ ‘

27-January-84 , FRSLIG-21

Internals & Confidentis”

11. File 10 Routines: X_REWRT, X RESET, % CLOSE, X_EDF, X_BLKRD, X_BLKWR,

% I0RES, % GET, X PUT, % UPARR, % _SEEX
- %_REWRT - Rewrite a file

Parameters: ST.L - File Address
ST.L - Rddress of Name String
ST.W - Kind: -2=text, -1=file, >O=number of words per
- yecord

Returns: -
Registers used: DO, D1, Dz, D3, RO, R1l, R2
Crestes and opens & new file.

% REWRT first initializes the file's FIB (file identification
block) by meking a call to FInit and pscsing it the file type via
the parasmeter recBytes. Once the file type is determined, the
value of FRecSize is initialized. The values of recBytes and
FRecSize and the file types are:

recBytes file tvpe FRecSize
-2 text -1
-1 untyped , 0
0 interactive -1
>0 typed value in recBytes
Other important FIB entries are initialized as follows:
FIsOpen := false .. The file is marked as not open
FNewFile := false .. The file is marked as not new
(i.e. no creation of new files)
FEOF := true .. End Of File is set to true
FEOLN := true .. End Of Line is set to true
fModified:= false .. The file is marked as not modified
FIsOS := true .. The file is marked as an 0OS File

%_REWRT then calls FOpen. Within FOpen:

A check is made to determine whether the file has been opened
by referencing the boolean FIsOpen. If FlsOpen is true an
IOResult error will occur; if not, it is set to true.

FOpen then determines whether the filename is one of the
character devices CONSOLE, KEYBOARD, or PRINTER. If it is,
FOpen opens the file. If the filename is PRINTER, & check is
made to determine if the printer is connected. If the printer
is not connected, an IOResult error will be genersted. The FIB

27-January-94 PSLIB-22

Internsls & Confidentis.

variable Funit is also set accordingly: 1=CONSOLE, 2=KEYBOARD,
3=PRINTER, 10=other devices (not pseudo devices). '
The FIB variable FNewFile is set to true to indicate that a.neﬁ
file is being created with a rewrite, otherwise its value would
remain false indicating a reset operation.

FOpen crestes and opens & new temporery file if the filename
does not exist (i.e. if FNewFile is true), otherwise it opens
the existing file. If the temporary file is of type TEXT,

FOpen writes two header blocks of null to the file. FQOpen glsc
Kills the temporeary file so that it mey be unkilled during the
close.

% _RESET - Reset a file

Paremeters: ST.L - File Rddress
ST.L - Adaress of Neme String
ST.W - Kind: -2stext, -1=file, >O=number of words per
record

Returns: —-—

Registers used: DO, D1, D2, D3, RO, Rl, R2Z

Opens ar existing File.

% _RESET behaves in the same manner as %_REWRT, by making calls to
procedures Flnit and FOpen. However, %_RESET does not create &
temporary file (FNewFile is false). It attempts to open the

existing file and if it is unsuccessful will issue an IOResult
error.

Before exiting FOpen, %_RESET makes a call to the FReset procedure

which in turn calls the FGet procedure. This has the effect of
advancing the file position to the first record of the file.

&7-IENUET)~84 FRSLIG-25

Interna]s

® Confidentisl

%_CLOSE - Close a file

Pareameters: ST.L - File Address

ST.W - Mode: O=NORMAL, 1=LOCK, 2=PURGE, 3=CRUNCH

Returns: —

Registers used: DO, D1, D2, D3, RO, R1, A2

If the file is a character device (e.g. console, keyboard) or if

the file is not open (FIsOpen is false), the close procedure has
no effect.

CRUNCH and LOCK Options:

If the close option is either CRUNCH or LOCK, and the file is a
text file that had been opened by RESET (FNewfile is false), &
check will be made to determine if the number of blocks is odd.
If it is, a null block will be written to the end of the file.

If a previously existing file was opened by REWRITE (FNewFile
is true), it will be killed (i.e. deleted). Its temporary

file, which was killed by FOpen, is unkilled using the original
file name as the new file name.

PURGE Option:

If the file was created by REWRITE, the temporary file will
have already been killed in FOpen.

The PURGE option will kill the original file provided it was
opened by RESET (FNewFile is false).

NORMAL Option:

J7=January~-Sd

If the file was created by REWRITE, the temporary file will
have already been killed in FOpen.

The originel file is left untouched.

FRSLIB-24

Internsls & Conrigderitis.

%_EOF - End of file predicate
L Peremeters: ST.L - File address
Returns: ST.B - Boolean Result
Registers used: All registers ere preserved.
2§égcts the end of & file by referencing the FIB boolean entry,

%_BLKRD - Blockread

Perameters: ST.L -~ File Rddress
ST.L - Buffer address
ST.W - Number of blocks to read
ST.W - Block Number, -1 = Sequential
#essvsr ST.W - DoRead, O = write, 1 = reed Sh4es

Returns: ST.W = Number of blocks actually read

Registers used: DO, D1, D2, D3, RO, Al, R2

%_BLKRD generates a call to the FBlocklD function, passing the
parameters listed above. The boolear variable DoResd is set to
true for Blockread and false for Blockwrite.

Within FBlocklO:

It the file is not open (FIsOpen=false) eand the number of
blocks to transfer is less than zero, FBlocklO will generate &n
IOResult error and the file will not be processed.

If the file is the character device CONSOLE or KEYBOARD, an
I0Result error will be genersted and the file will not be
processed.

If the file is the character device PRINTER, the block number
to start the transfer (RBLOCK) is set to -1.

If the boolean DoRead is true, FBlocklD reads blocks from the
file via a READ_DRTR call, otherwise FBlockID writes blocks to
the file via & WRITE_DATR call.

Before these 0S calls can be made, the mode and offset must be
determined.

27~ Janusry~-84 FRSLIB-25

Internsls & Confidentisl

If the block number to start the transfer (RBLOCK) is less than
zero, the mode is SEQUENTIAL and the offset is zero, otherwise
the mode is ABSOLUTE and the offset is calculated as:

ord4(rblock) * FBlkSize
where FBlkSize is the Standard Disk Block Length (512)

The nunber of blocks actually read or transferred is calculsted
as:

FBlockl0 := actusl div FBlkSize

where 'actusl’ is the number of bytes transferred by the
READ_DATA or WRITE_DATA OS calls.

EOF (FEOF) is set to true when the last block is read.

%_BLKWR - Blockwrite
Paremeters: ST.L - File Address
ST.L - Buffer address
ST.W - Nunber of blocks to write
ST.W - Block Number, -1 = Sequential
#sss3s ST .W - DoRead, O = write, 1 = read bkl
Returns: ST.W - Number of Blocks actually written

% BLKWR behaves in the same manner as %_BLKRD, except it passes

the boolean veariable DoRead with a value of false when csalling
FBlockIO.

%_IORES - IOResult
Parameters: None
Returns: ST.W - 10Result
Registers used: All registers are preserved.
Refer to the Norkshop User ‘s Guide for the values of IOResult.
Returns an integer value that reflects the status of the last
completed 1/0 operation. Note that the code O indicates

successful completions, positive codes indicate errors, and
negative codes are warnings.

27-Jaruary-64 PRSLIB-25

Internal s & Confidentisl

%_10RES makes & call to function FIOResult, which in turns
references the variable JIORslt. The varisble 10Rslt is assigred
values by the procedure % _SETIORSLT. This procedure is called by
FPLib and appastext only.

% GET - Read the next record in a file
Paremeters: ST.L - File Address
Returns: -—

Registers used: DO, D1, D2, D3, A0, A1, A2

%_PUT - Write the current record in & file
Perameters: ST.L - File Rddress
Returns: ——
Registers used: DO, D1, D2, D3, RO, A1, A2
If % PUT is called immedistely after a file is opened with
% _RESET, the PUT will write the second record of the file (since
the % _RESET sets the current position to the first record and
%_PUT advances the position before writing).
%_UFARR - Compute the address of F*®
Paremeters: ST.L - Rddress of file

Returns: ST.L - Rddress of F*

Registers used: Rl]l registers are preserved.

&7-Jenuary-84 FRSLIG-27

Internals & Confidentis]

%_SEEK - Allows access to an arbitrary record in a file.

Parameters: ST.L - Address of file
ST.W - Record number to seek

Returns: -—
Registers used: DO, D1, D2, D3, AO, A1, A2
If the record number specified does not exists,

1) %_SEEK causes the next GET to access the last record in the
last block of the file.

2) %_SEEK causes the next PUT to append the record to the end
of the file.

27-Janvary-54 FRSLIB-28

PPaslibC Unit:
Privileged PASLIB Calls

The unit PPaslibC provides you with several useful low-level system furictions.
However, they: are not for everyone! They are tricky, in some cases heve globsl
effects on the entire system, and should be used with caution.

In order to use these routines, you must use the units SYSCALL and PPaslibC:

1>3
$U SysCell} SYSCALL,
$U PPeslibC) PASLIBCALL;

This gives you access to the routines listed below. These routines are contaired in
1I0SPASLIB.OBJ, so programs using them require no additional inputs to the Linker.

procedure BlockIOinit;

Initializes all shared PASLIB data. Opens inputfile snd outputfile,
associating them with the filename ~CONSOLE.

BlocklOinit must be called by every shell before performing eny 1/0; it
will only be executed by the first shell that cells it.

It is called by the system.shell at boot time, once for the entire systen.

procedure BlockIOdisinit;

PASLIB cleanup. BlocklOdisinit closes the conscle only for the first snell
that called the BlocklIOinit procedure.

procedure LockPaslib (var exrnum: integer);
where:

errun is the error number returned if the procedure hes any problems.
(See Appendix R of the Workshop User's Guide for an
explanation of the error codes.)

Locks the PASLIB1 segment in memory so it won't be swapped out. Used by
the filer for unmounting the boot device.

procedure LockPasIOlib (ver errnum: integer);
where:

i exrmum ,1s the error number returned if the procedure has any problems.

-

- Locks the PASIOLIB segmert in memory so it won't be swapped out. Used by
. the filer for unmounting the boot device.

&-February~84 Fraslidl-1

Internals & Conlidentis}

procedure MoveConsole (var exrnun: integer; applconsole: consoledest);
where:
exrnum is the error number returned if the procedure has any problems.

applconsole tells where to move the console. (Consoledest is an
enumerated type of: alscreen, mainscreen, xSorocf, xsorocB,
folder, sparel, spare2, spare3.)

Moves the console to the main screen, an alternate screen, or an externsl
terminal connected through RS232R or RS232B. The file names are:

RAlternate Screen ~AL TOONSOLE-X
Main Screen ~MAINCONSOLE -X
Exterral RS232R Terminal RS232AR-X
External RS2328 Terminal RS2328B-X

procedure ExecReset (var errnum: integer; execfile: pathname; stopexec:
boolean);

where':
exrnun is the error number returned if the procedure has any problems.
execfile is the exec file name.

stopexec tells whether to open or stop the exec file.
TRLE = stop; FALSE = open.

If stopexec is TRUE, ExecReset closes the input file and
reopens it, associating it with the temporary exec file. It
then generates two calls to the FReadchar function to read and
save the temporary file's first character into the variable
gfirstchar, and the next character into greadahead. ExecReset
then sets the boolean gexecflag to TRLE.

If stopexec is FALSE, ExecReset calls the Resetinput procedure,
which closes and reopens the input file, associating it with
-CONSOLE. ExecReset then sets the boolean gexecflag to FALSE.

Opens or stops an exec file.

ExecReset is called once by the Exec Command Interpreter, to open and read
from the exec temporary file and reopen the input file to the console.

function ExecFlag: boolean;
Tells whether an exec file is open. TRLE = open; FALSE = closed.
ExecFlag references the input file FIB boolean entry FSOFTBUF.

g-February-84 - Fraslipt-2

Internsls & Conliderntisal

procedure mtputﬂedi).rect (var exrnum: integer; outfile: pathname; stopoutput:
: boolean);

where:

- exrrnum is the error number returned if the procedure has any problems.
outfile is the file name.

stopoutput tells whether to close the file or leave it open.
TRE = close; FALSE = leave open.

If stopoutput is TRUE, OutputRedirect calls the Resetoutput
procedure, which closes and reopens the output file,
associating it with -CONSOLE.

If stopoutput is FALSE, OutputRedirect closes the output file
and reopens it, eassociating it with the filename outfile.

Redirects output to 8 file.

function OutputRflag: boolean;

Tells whether output hes been redirected to & file. TRUE = output file
open (output redirected); FALSE = closed (output not redirected).

OutputRflag references the output file FIB boclean entry FSOfTBUF.

procedure DSPaslibCall (ver ProcParem: dsProcParem);
where:

dsProcParar = record
case ProcCode : dsProcCode of
dsResProg : (RProcessld : longint); {must be called
before the process starts running.}

dsSoftPwbtn : (SPButton : boolean); {result}
dsPrintDev : (PrDevice : e_name);
dsSetGPrefix : (exrnum : INTEGER; (result}
prefix : pathname);
dsEnbDisk : (DiskEvent : boolean);

dsCiTranlisaCar : (toTranslate : boolean);
{to turn on ar off translation far C. Itoh}
end;

dsProcCode = (dsResProg, dsSoftPwbtn, dsPrintDev, dsSetGPrefix,
dsEnbDisk, dsCiTranLisaCer);

dsResProg passes the process ID of & process that is going to be
resident to PASLIB.

h dsSoftPwbtn returns the soft power button setting. If the button is
o ~ pressed, it returns TRUE; if not, it returns FALSE.

o-February-64 Fraslibl->

Internsls ‘ & Confidentisl

dsPrintdev passes the physical device neme of the corresponding
logical device -PRINTER to PASLIB.

dsSetGPrefix passes the global prefix volume name to PASLIB. If an
error has occurred, it is returned in exrnun.

dsEnbDi sk tells PASLIB to enstle (if DiskEvent is TRUE) or diseble
(if DiskEvent is FALSE) the automatic mounting and
ejecting of a diskette.

dsCoTranlisaCar tells PASLIB to turn on (if toTrenslate is TRUE) or off
(if toTranslate is FALSE) the Lisa character translation
for a C. Itoh printer for the calling process. The
default setting is on.

DSPaslibCall is a new call in the PPaslibC unit that communicaetes to and
from PASLIB about the run-time support for the system or the calling
process. It has a variant-record parasmeter for indicsting various
functions. Note that most of these functions dictate system behavior; they

are not safe for any process to call except the Lisa character translation
function.

o-February-84 FPaslidl-4

Rich Page
Apple Computet, Inc.
May 4, 1983

Execution Environment of the Lisa Pascal Compiler

Registers:
DO-D2/7AD-Al User iemporaries

- DO-D3/A0-A2 Compiler emporaries
D4-D7/A3-A4 Comptler uses for locals & pointers

AS Pointer w0 global frame

A6 Pointer 10 local frame

A7 Pointer o top of stack
Globa! Frame:

The global frame consists of two segments:

1) The Jump Table Segment
Z) The Stack Segment (first of N segments)
The global frame is layed out as follows:
Jump Table
Segment Table
Data Pointer Table '

Shared Main Program Parameters
Private Main Program Parameters

Main Program Globals
Regular Unit Globals

Intrinsic Unit Globals

|
;
i

9-May-63 ‘ Compiler Execution Emironment-1

The Jump Table is a an array of 6 byte JMPs used 10
transfer control between segmeants of the program and

the regular units used by the program. This is built by
the Linker from Entry points and Externals refetence lists,

The Segment Table is a structure which defines each of
the segments of the program and the regular units. This
is used by the Loader to swap in segments. For each of
the segments, the Segment Table provides a file address,
sinofcode(packed&unpackedsizes)andmelogiml
address (ie. segment number).

The Data Pointet Table is an array of 4 byte pointers
which is used to reference global data for intrinsic uaits,
This structure is built by the Loader and referenced by
mpﬁed code.

.The Shared Main Program Parameters is an area reserved
far use by the Loader to store information about the main
- program. Curremly this area is $100 bytes.

The Private Main Program Parametess is an area initialized
by the loader and referenced by compiled code. This area
contains painters o INPUT and OUTPUT file buffers and
other information such as the size of the regular unit globals,
Currently this area is $100 bytes.

The Main Program Globals is the global data allocated by
the compiler for the program.

. The Regular Unit Globals is the combination of all global
data required by the regular units used by the program.

The Intrinsic Unit Globals is the private global data which
is required by the intrinsic units used by the program.

The Users Dynamic Stack is that area which is used by the
program for local frames, emporary data and procedure

Bnkages (both pascal and assembly language).

Initially the Loader allocates encugh space 1o cover these
areas and the uset min stack requirements. The system also
" enforces a upper limit (ie. max stack),

4-May~83 Compiler Execution Emironment-2

Local Frame:

The local frame consists of the following:
1) Fuaction result and parameters
2) Swtic and dypamic links
3) Locals and compiler tempararies
4) Dynamic stack area
. The local frame is layed out as follows:

Function Result *
Parameters **
_ . Slalic unk 83
| Return Address :
DynamicLlink .

: Compiler Temps
Dynamic Stack Area
* Two or four byt fusction fesult, present only for functions.

*% N bytes depending on the parameter Hst
##* Present only for non level 1 procedures and parameters. -+

The local frame is allocated by the compiler and allows the
‘compiled code 1o reference locals, paramters, static links, -

The dynamic link (fe. OldA6) is pushed by the LINK A6
instruction which allocates space for locals and compilet temps.

The static link is pushed by the caller as part of the parameter
ist The static link is g copy the parents A6 (i, local frame).

Compiler temporaries are used o implement constructs such

as non local gotos and expressions computed by the compiler
which happen to not be in segisters. These expressions may
include for loop limits or with expressions.

Parametric procedures and functions appear as follows:

Address of fum: body

Note zero is used for level 1 procedures.

||H|||||

4-May -3 Cormpiler Execlkion Emironment-

Automatic Stack Expansion:

The compiler communicates the space requirements for each
procedure by preceding each LINK Aé,#-size with one of the

fallowing sequences:
TSTW eAD)
of ' o
MOVEL A7AQ
SUBL ~ - #size,AQ
TST.W (AD)

The offset used in the first case ar the size in the second reflect
the sum of the procedures static and dynamic requirements.
This sum is inflated by at least $100 bytes to allow assembly
language procedures 1o use a small amount of stack space at »
low cost (ie. they need not check). Note the code for automatic

~ stack expansion can be controlled with a compile option.

_JSRs, JMPs, LEAs and PEAs:

These instructions are used 10 transfer control and obtain the
address of a procedure or function. These instructions exist in
_threefnrmsancfwhichwcupﬂbyteseach:

1) Within g segment: PC relative
- 2) References o regular segments: Offsets from AS
J3) References 1o intrinsic segments: [U Trap instructions

The first form is simply a reference 10 a procedure from within
the same segment which uses the PC relative addressing mode.

ge second form isba t{e’ferengn?dampwdure wgc& isnotin
same segment but is con a segment of the program
or a regular unit. This is implemented by using an offset from
AS 1o reference the procedure through the Jump Table.

The third form is a reference t0 a procedure which is contained
in an intrinsic segmeant (ie. in an intrinsic unit), This form is
implemented by using Line 1010 trap mechanism to compress
the opcode and 24 bit logical address into a 4 byte instruction.

In each of the above cases the compiler emits references the

desired procedure or function and the linker constreuts the
appropiate addressing mode for JSRs, JMPs, LEAs and PEAs.

4-May~-83 Compiler Execution Emsironnent-4

Structure of Code for a Pascal Procedure or Function:

The code emitted by the compiler contains three constructs which
can be controlled via compile time options. Theseareasfollows

1y Automatic stack expansion.
2) Range checking for values, indexes and strings.
3)Debuggung info (je. the procedure name).

Theeodefmuypmlpmdurewﬂllmkasfoﬂows

ISTW A7) - Tests for sufficient smct space

LINK AS ¥ size Allocates space for locals

body of the procedure or function

UNLK A6 ~ Restares previous local frame

RIS Exit sequence

| Eight byte procedure name and |
two byte data size. This is the
optional debugging information.

1
constant data area fur strings & sets

The exit sequence emitted by the compiler is dependent on the
number of bytes of parameters. If there are no parameters then
the RTS is used as shown above. The compiler emits one of the
following sequences when parameters must be deleted:

Case #1: 2 6 ar 8 bytes of paramters

MOVEL (A7)+ A0 3
ADDQW #s2e A7 2
M (A0) _%. b ul
Case #2: 4 bytes of parameters yies 10
MOVEL (AD+ (A7) 2
RTS 2
“§ bytes total
Case #3: more than 8 bytes of parameters
MOVEL (AT)+,A0 2
woE
"8 bytes total

4-Moy~83 Compiler Execution Emvironment-5

Segmentation & Large constants passed by value:

Since the 68000 is not restartable, (le. use a 68010 instead) the
data (fe. stack and heaps) for a given program must be present
while the program is executing, Since code segments must be
swapped into memary as needed and set and string constants
are stored with the code, large constants passed by value pose
& prodlem. Currently, we solve this problem by having the
compiler use the instruction TST.B (Ai) to check to see if the
the actual value parameter is in memory. If the TST.B (Ai)

causes a fault then the system loads the segment containing the
address in AL

When copying strings the compiler emits code which depends
only on the size of the destination. This may cause the code
10 read beyond the end of a segment The sysiem allows for
this by mapping code segments to cover size + 236 byles. The
heap segments also have an additional 256 bytes.

4-May-83 Compiler Execution Environnent-§

Shell-Writer's Guide

This document contains information you need to know to write e shell for the Lise

It describes the things & shell must do when it starts up and when it terminates. To
use this document, you should be femilier with the Joerating S)stem Rererence
Manua! and have some knowledge of Pascal. To do any graphics, you will have to
use QuickDraw, described in the Fascal Reference Marwsal You mey also want to use
calls in the PaslibCall and PPaslibC units.

The System.shell

When the OS is booted, it starts the ‘root' process, which searches the boot disk for s
shell called 'system.shell'. The systemn.shell is automatically sterted, and will be the
ancestor of all other shell processes (see Figure 1). All shells must be “"plug-
competible” with each other so that any shell can be the systemishell without specisal
support from the 0S. In this way, & turn-key boot disk could be prepared that dign't
include 8 selector shell

(Root process)

Systemn shell)
(Environments window)

(Ofﬁce Syswnj (other shells j
(&=) G
(UitraDos)

Figure 1
Process Picture

7-Februar, -84 Stell-whriter's Guide-2

lnternals & Confidertisl

If your shell is the first process {the system.shell), you must make the following
systern initialization calls. Normally, the selector shell takes care of this for you.

Startup: procedure BlockDInit; Initializes Pascal 1/0. (Note: if you don't heve
the privileged PASLIB interface, declare BlockIDlInit external.)

mocedure PMinit (var error: integer), Initializes parameter mernory.
{Note: you have to be able to link against the pmm unit to
make this call))

function enableDbg (on: boolean): boolean; Activates LisaBug if you
want to use it.

mocedure setNMlkey (keyCap: integer), Makes LisaBug accessible
through the NMI key. '

Termination: procedure BlockIDDislnit; PASLIE cleanup. (Note: if you don't have
the privileged FASLIB interface, declare BlockIOlnit external.)
To tell if your shell is the system.shell, csall:
info_process (OSErr, My_ld, PlInfo)
If Pinfofsather_id is 1 (the roct process), then you're in the systemn.shell.

The Environrnents window is the standard system.shell It scans the directory of the
startup disk for files whose names begin with 'shell.’. For your shell to be recognized
and available from the Environments window, the name of its object file must start
with 'shell.’.

Interprocess Communicetion

Event channels are used for communication between processes. The root process and
the selector shell expect information from their son processes through a
SYS_SON_TERM event channel, telling why the son terminated, and whether the father
should restart the son, select or start another shell, turn the power off, or restart the
machire. The 0S guarantees that this event will always be sent back to the father cf
a terminated process via the local event channel, even if the son process was
unwillingly aborted.

At Shell Startup
FATHER: A process that starts a shell must do the following:

1) Establish a local event channel to allow its son to communicate with it
(OPEN_EVENT_CHN).

2) Stert the son shell (MAKE_PROCESS).
3) Wait for a SYS_SON_TERM event (WAIT_EVENT_CHN).

7-Februsary-94 Shell-writer's Guice-2

Internsls & Confidential

SON: The shell that was started must do the following:
1) Declare & SYS_TERMINATE exception hardler (DECLARE_EXCEP_HDL).

This exception will be signalled wher the shell process is &bout to be
terminated for any reason: because KILL_PROCESS or TERMINATE_PROCESS
has been cealled; because the process ran to completion; tecause there has
been a bus error, address error, illegal instruction, privilege violation, or line
1010 or 1111 emuletor error.

If this procedwre is declared the 0S will alwa,u give it a chance to run
befare the process is terminated.

It is recommended that new shells not assume anything ebout the state of the
machine (e.g. the console setting, etc)).

For more information on event chanrels and on starting up other processes from &
shell, refer to the Operating S)stem Reference Msnusl

At Shell Termination

SON: It is the shell's responsibility to meake the operating systern call to
TERMINATE_ PROCESS to open an event channel, s_eventblk (an array of longints).
The first entry of this block (s _eventbli[1]) contains the event thet tells the shen‘
fether whet to do. The chosen meanings for these velues are:

1--Restart same shell (shell crashed and needs to be restarted). To avoid mfxmte
loops of START - CRASH - RESTART - CRASH..., the user will be able to
intervene when the selector shell is reached.

2--Select ancther shell (SELECT_ANDTHER command).

3--Stert the specified shell. The remaining longints in the event text block
(s_eventblk{2_9]) are interpreted as & packed array [1..32] of characters (with
no length field), containing the file name of the shell to be started. The
unused portion of the arrey is packed with spaces.

4--Turn machine off (white power button clicked, ar POWER_OFF command).
5--Reboot the machine.
other -- Unspecified.

It will be the job of the shell's terminate exception handler (which is just & procediure
the shell owns) to guarantee that the proper SYS_SON_TERM event text is set before
the shell actually terminates. It can do this by calling TERMINATE_PROCESS, one ¢f
whose parameters is a pointer to this block.

7-February-84 Shell-writer's Guide-X

lnternals & Confidentisl

FATHER: The father of the shell that just terminated should:

1) Reawsken because it has received the SYS_SON_TERM =vent via its local
event channel.

2) Check the event text to see what to do.

Examples

Following are code segments from both a father shell and a son shell showing the
start-up and termination of the son.

These constant and type definitions are used throughout the following examples:

CONST
aRestsrt = 1; (Restart me }
aselectAanthey = 2; {(Select anotner shell)
astertanother = 3; {Start the snell named in the event text)
ff = 4, {Turn off Lisa)
aReset = S; {Res2t the machire)
TYPE

{ this is 8 varisnt recora which allows us to sddress the packed errey of char)
trix = RECORD CASE BOUOLEAN OF
TRUE: (ewDlk: §_eventhlk);
FALSE: (Zeroth: longint:
first: longint;
. rest: packed array [1i..max_ensmz]) of char:):
END; (trix)

FATHER: This code shows a father shell starting up a son shell and waiting for its
termination.

PROCEDURE Shellloop:;

VAR OSerr: integer:
proci0: longint:
frieme: pathname;
aNntry: NaMes tring;
nextTaDo: integer;
exX_name: t_ex_name;
ev_chen_refnum: integer:
e_ch_name: pathnanme;
Weitlist: t waitlist;
e pty: r_eventdlk;

;Rgiml! Selectiell (VAR fName: pathnane);
N

WRITE('Next Shell ?');

READIN(fname);
END: (SelectShell)

7-February'-84 Shell-triter's Guiae-4

Internals & Conficentisl

PROCEDURE Stuffiame (ev_blk: s_eventblk: VAR fneme: pathname);
\molw tnx

blo:k ewlk = ev _blk:
i:4q;
e = '': (nUl) string)
WHILE i¢=32 uo BEGIN
IF fnemeli) = ° ' (spece) THEN BEGIN)
mane(0) := CAr(3-1); {(Stuff length field)
EXIT(StuffNeme);
END: (IF) .
frieme[i) := Dlock.restli):
i 21 «4;
END: (WHILE)

fnene[0] := CAr(32); (stuff length field)
END: (Stuffieme)

BEGIN (Shellloop}

entry := '°;
e ch name = '’
ex me H I
Cpen Event_Chn(0Sery,ev_ch_heme e/ _Chen_refmum, ex_Neme Teceive);

Selectsnell(Mmeme);

REPEAT
Make _Prooess (0sEyy.prociD, fname. entry. ev_chen_refnum);
1F (GSErr ¢= 0) THEN EEGIN
weitlist.length := 1;
weitlist.refnumi0) := ev_chan_refrunm;
Weit_Event_Chn(osErr,waitList which, dev_ptr);

{cooe for father shell bringing dovn son starts here)
Ki1]_Process(osEry,prociD):;

IF ev_ptr event_text[0)=t&ll_term THEN (ulleﬁ terninkte_process)
El&Nem‘rcavoo = ev_ptr.event_text[1)

NextToDo := sSelectAnther;
BND; (made the process successfully)

CASE NextToDo OF
sRestart: (6o nothing);
aSelectanother: SelectShell(fneme):
sStertanother: Stuffhane(ev_ptr.event_text, fname); (get name of NextShell out of event_text)
a0ff: ShutDown(eDff); (a--turn the mechine off)

aReset: ShutDown(eRreset); {S—reset the machine)
OTHERWISE SelectShell; :

END: (case NextToDo)

UNTIL HellFreezesOver:
END; (Snelliloop)

7-Februan -84 Shell-writer's Guide-5

Internals & Confidential

SON: This procedure makes the necessary calls for the start-up of & shell.

PROCEDURE Shellinit;
VAR OSerr: INTEGER:
PInfo: Procinforec;

BEGIN
info_process(0Serr,my_ID,PInfo);
IF PInfo.fatrer_10 = 1 {(root) THEN BEGIN
glockloinit: {from PPasLiDC)

PHinit; {from PMM)
20 1F %;amm THEN swmkey(SS) {stenaard NI keycep)
;. (1IF}

END; (Shelllnit)

This code shows the shutdown of a shell. I the‘ ShiutDown procedure is declared as
the Sys_Terminete exception handler, it will properly communicate to its father its
reason for terminating.

PROCEDIURE ShuutDown (why: INTEGER):
TYPE

VAR

block: trix; { the varisnt record)

NextShell: e_neme:;

i: INTEGER: { for the for loop) .

OSerr: INTEGER; { Tequired paramzter for the call to terminste_process)
BEGIN

block .evwdlk(1] :
IF why = cStartTmsOre THEN BEGIN
NextShell :x ‘shell.rext';
{copy string without lengtr. fielg)
FOR 1 := 1 TO length(nextshell) D) block.rest[i) := r!xtsh!llh]
o0 FOR i := length(nextsnell) - 3 TO Max_enare DO bDlock.rest(i] : ‘s
termirate_precess(0Serr, @1ock. e1k);
END; (ShutDown)

7-F.ébruar}-'-84 Shell-writer's Guide-6

